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Abstract:In this paper, we prove the existence of global conservative solutions of the Cauchy
problem for the generalized Camassa-Holm equation. We transform it into an ODE system in
a Banach space. By using the ODE theories and some related knowledge we obtain the exis-
tence of the short -time solutions. Particularly we obtain the global conservative solutions with
respect to the initial date.
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1 Introduction

In [1], Degasperis and Proesi studied the following family of third order dispersive PDE conservation laws,

Ut + otz + Viigzs — 0 Utze = (c1u® + 2l + C3Ullag) (1.1)

where «, ¢y, c1, c3 and c3 are real constants. They found that there are at least four equations that satisfy
the completely integrability condition within this family: KdV equation, Camassa- Holm equation, Dullin-
Gottwald-Holm equation and Degasperis- Procesi equation.

With a = ¢g = ¢3 = 01in (1.1), it becomes the well-known Korteweg-de Veris equation.

The KdV equation is completely integrable and its solitary waves are solitions [2, 3]. The Cauchy
problem of the KdV equation has been studied extensively, and a satisfactory local or global existence
theory is proved in [4].

Forc; = —3c3/a?, co = ¢3/2, (1.1) becomes the Camassa-Holm equation.

Ut — Uggt + Uz + 3UUy = 2UzUszy + Ulggy (1.2)

It has a bi-Hamiltionian structure and is completely integrable (see [5]). In [6] Dangping Ding and
Lixin Tian researched solution of dissipative Camassa-Holm equation on total space. Tian, Song, Yin [7, 8]
considered the generalized Camassa-Holm equation and derived some new exact peakon and compacton.

Dullin, Gottwald,Holm [9] discussed the following 1 + 1 quadratically nonlinear equation in this class
for a unidirectional water wave with fluid velocity u (x,t) .

my + CoUy + UMy + 2Mmuy = —Yugez, * € R, t€R, (1.3)

In [10, 11] Lixin Tian, Guilong Gui and Yue Liu studied the well-posedness of the Cauchy problem and
the scattering problem for DGH equation.
With ¢; = —2c¢3 / a?, ca = c3in Eq.(1.1) , we find the Degasperis-Procesi equation of
the form
Ut — Utpr + dUU; = SUgUgpy + UlUgrr,t >0, T ER (1.4)
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Degasperis, Holm and Hone [12] proved the integrability of (1.4) by constructing a Lax pair. They
also showed that Eq.(1.4) has bi-Hamiltonian structure and an infinite sequence of conserved quantities, and
admits exact peakon solutions which are analogous to the Camassa-Holm equation. After the Degasperis-
Procesi Eq.(1.4) was derived, many papers were devoted to its study. For example, Yin [13] proved local
well-posedness to Eq.(1.4) with initial data ug € H* (R), s > % and derived the precise blow-up scenario
and a blow-up result. The global existence of strong solutions and global weak solutions to Eq. (1.4) was
also investigated in [14, 15, 16, 17].

For the nonlinear partial differential equation

Ut — Uggt — YUzzz + f(u)x - f(u)$za; + <g(u) + ;f”("d)(ux)2> =0

xT

When f(u) = 2yu?, g(u) contains u™ (n > 2) term, and we add a dispersive term yu, , then we get

the generalized Camassa-Holm equation

Ut — Uggt + %g(u)x - 7(2uxux$ + Uy — ux) =0 (1.5)

This is the equation which we will consider in this paper. When g(u) = 3_27 u? , Eq.(1.5) becomes
Eq.(1.2). Here we take a different approach, based on recent techniques see [18, 19, 20, 21]. The equation
can be reformulated as a system of ordinary differential equations taking values in a Banach space. In the
space, we consider the conservative solutions that preserve the energy. We prove Eq.(1.5) possesses a global
conservative solution. Furthermore, we show that the problem is well-posed.

This paper is organized as follows: In Section 2, first we transform the PDE into an ODE system. Short-
time existence is derived by a contraction argument, see Theorem 2.3. Global existence with respect to both
initial data and functions f and g , is obtained for a class of initial data that includes initial data u|;—g = @
in H'(R) , see Theorem 2.7.

2 [Existence of solutions

2.1 Transport equation for the energy density and reformulation in terms of Lagrangian
variables

Eq.(1.5) is rewritten as the following term ( see [22,23])
1
up + Yty + Pr =0, P = Pry = o (g(u) — y0® + u} + 2yu) @1

It is advantageous to rewrite the equation as

u+ f(u)y + P, =0 (2.2a)
1
P = Poy = g(u) + 5" (wug + f"(w)u (2.2b)
where we assume
FeW2> f'(u) #0,u e R
5% (2.3)
g€ W, ,9(0) #0

In (2.2 b), P can be written in explicit form:

1 1
P(t,z) = 3 / ¢~z <g ou+ §f" ouul + "o uu) (t,z)dz (2.4)
R

After differentiating (2.2a) with respect to x and using (2.2b), that

Ugt + 7 (w)u2 4 ' (w)tge + P — g(u) — f"(u)u =0 (2.5)

IJNS email for contribution: editor @nonlinearscience.org.uk



Lixin Tian, Yunxia Wang: Global Conservative Solutions of the Generalized - - - 197

Multiply (2.2a) by u , (2.5) by u, , add the two to find the following equation

(u® +uz)e + (f (W) (u® +u3))e = =2(Pu)s + (2g(u) + " (w)u® + 2f" (u)u)u, (2.6)
Define
/ )+ f(2)(22 + 22))dz (2.7)
0
Then (2.6) can be rewritten as
(u? +u2)y + (f (w)(u® +ul))e = (G(u) — 2Pu), (2.8)
which is transport equation for the energy density u? + u? .
Define
ve(t, €) = f'(u(t, y(t,€))) (2.9)
Let the characteristics y(t, &) are the solutions of(2.9), suppose y(0,&) is given. Given &1,& in R, let
y(t7£2)
H(t)= [ (u®+ u2)dx be the energy contained between the two characteristic curves y(¢,&1) , y(t, &2)
y(tvsl)
. Then, we have
dH y(t7£2)
= = [p(t, )W +u )oy(t,g)]g + / (u? 4+ u)d. (2.10)
y(t,61)

We use (2.8) and (2.10) then integrate by parts, then we get

dH
ar [(G(u) = 2Pu)o y]éf
We now derive a system equivalent to (2.2). The calculations here are formal and will be justified later.
Let y still denote the characteristics. We introduce two other variables, the Lagrangian velocity U and

cumulative energy distribution H defined by

2.11)

U(t,&) = u(t, y(t,6)), (2.12)
y(t,€)
H(t,§) = / (u? + u?)dx (2.13)

From the definition of the characteristics, it follows from (2.2a) that

Up(t,€) = ue(t,y) + ye(t, Oug(t,y) = (ug + f (u)ug) oy(t, &) = —Proy(t,€) (2.14)

This last term can be expressed uniquely in term of y , U , and H . Namely, we have
1 ly(t,€)—=] L., 2
Pooylta) = —5 [ sgn(y(t,€) - 2)e” gout 5 f"(w)(ud +2u) ) (t,2)dz
R

After the change of variable z = y(¢,7) ,
Pyoy(t,x) = =3 [ sgn(y(t, &) — y(t,n))e WHO ()
x (g0 -+ L () w2+ 20)) (6 y(t, m)ye(t, m)dn
Finally, since H, = (u? +u2)o YYe,
Pyoy(t,€) = =5 [ sgn(y(€) —y(n))e WO —v)

(2.15)
x ((9(U) - §f”(U)U2 + f(U)U)ye + 5.f"(U)He) (n)dn
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Then P, oy is equivalent to () where

Qt,¢) = —%R sgn(& —n) exp(—sgn(& —n)(y(€) — y(n)))
x ((g(U) = 3 f"(U)U? + f"(U)U)ye + 5.f"(U)He) (n)dn

Slightly abusing the notation, we write

2]1{6 —sgn(& —n)(y(§) —y(n))) 217

><((( ) 3f"(O)U? + f1 (U )ye + 5" (U)He) (n)dn

P, oy and P oy can be replaced by equivalent expressions given by (2.16) and (2.17) which only
depend on our new variables U , H , and y . We introduce yet another variable ((¢, &) , simply defined as
C(t, ) =y(t, ) — ¢

It will turn out that ¢ € L*°(R) . We have now derived a new system of equations, which is equivalent
to (1. 5). Equations (2.9), (2.11) and (2.14) give us

Yt = f/(u)a
Uy = —-Q, (2.18)
H, = G(U) — 2PU

(2.16)

Detailed analysis will reveal that the system (2.18) of ordinary differential equations for
(¢,U,H):[0,T]— E is well-posed, where E is a Banach space to be defined in the next section. We
have

Qe = 7%f”(U)H§ + <P + éf”(U)U2 - (U — 9(U>) Ye

and
= Que.
Then differentiating (2.18) yields

Cet = f”( VUe, (yer = " (U)Ug)
Ugt = 5 f"(U)He (P+1f”< )U2 = f"(U)U — g(U)) ye (2.19)
Hey = (29(U) + P00+ 2 (U)U ~ 2P) U — 2QUy

2.2 Existence and uniqueness of solutions in Lagrangian variables

Let V be the Banach space defined by V = {f € C,(R)|fe € L*(R)} , where Cy,(R) = C(R) N L>(R),
and the norm of V' is given by || f[ly, = || fl| oo m) + Ifell p2(m)

Of course HY(R) C V , but the converse is not true as V' contains functions that do not vanish at
infinity. We will employ the Banach space E defined by E = V x H'(R) x V to carry out the contraction
map argument.

Forany X = ((,U, H) € E , the norm on F is given by

XM = Il + 1T 2 my + IHy -

In this section, we focus our attention on the system of Eqs. (2.18) and prove, by a contraction argument,
that it admits a unique solution.

Lemma 2.1 (/26]) For any X = ((,U,H) in E , we define the maps QQ and P as Q(X) = Q and
P(X) = P where Q and P are given by (2.16) and (2.17). Then P and @ are locally Lipschitz maps
from E to H'(R) . Moreover,

Q¢ = =5 f"(U)He + (P + L' (U)U? = f"(U)U = g(U) ye,
P:=Q(1+ )

IJNS email for contribution: editor @nonlinearscience.org.uk



Lixin Tian, Yunxia Wang: Global Conservative Solutions of the Generalized - - - 199

Lemma 2.2 ([26]) Let By = {X € E|||X||zp < M} (i) If g1 is Lipschitz from By to L>(R) and g2
is Lipschitz from By to L*(R) , then the product g1g2 is Lipschitz from By to L2(R) . (ii) If g1, 92,93
are three Lipschitz maps from By to L°°(R) , then the product g1g2gs is Lipschitz from By to L (R) .

Next we will use a contraction argument to prove the short-time existence of solutions to (2.18).

Theorem 2.1 X = ((,U, H) in E, there exists a time T depending only on || X|| g such that the system
(2.18) admits a unique solution in C*([0,T), E) with initial data X.

Proof. Forany X = (¢,U,H) , X = ({,U, H) in By, from (2.18) we know

X(t)=X+ / F(X(1))dr (2.20)
0

For [[U]| oo () < IM,

|ro)-rw)

(! is the Lipschitz constant.)

Since f'(U)e = f"(U)Ug¢ , weknow X — f'(U), X — Ug, are both Lipschitz on By, ,
so X — f”(U) is Lipschitz from By into V', see [24]. And X — Ug is Lipschitz from By, into L*(R) ,
by Lemma 2.2 , X — G(U) is Lipschitz from By into L?(R).

UHLOO(R) SIM

ey < 17 by 10 = Oy < U X = X .

F(X) = (f'(U),-Q(X),G(U) —2P(X)U) ,

where F' : E — E ,and X = ((,U, H) . The integrals are defined as Riemann integrals of continuous
functions on the Banach space E . For all the above, we know X = (¢,U, H) — f'(U), X = ((,U,H) —
GU),X = (,UH) — P(X),X = ((,U,H) — U are all Lipschitz from Bj; to V' . Then, using
Lemma 2.2, we can check that each component of F'(X) is a product of functions that satisfy one of the
assumptions of Lemma 2.2, we obtain that F'(X) is Lipschitz on By, . Thus, F' is Lipschitz on any bounded
set of F . Since E is a Banach space, we can use the standard contraction argument and know the existence
of short-time solutions. m

Next we will proof the existence of global solutions of (2.18). We will find a particular class of initial
data that matches F , see Definition 2.2 In particular, we will only consider initial data that belongs to

Q={(y,UH)|(y,U H) € E0(W"*(R) x Wh(R) x Wh(R)) }
Lemma 2.3 y.H: = ygU2 + Ug almost everywhere.
Proof. In this equality, both of the two sides differenting with respect to ¢ and using (2.19), we get

(yeHe)r = yerHe + yeHe
= f"(U)UeH¢ 4 ye(—2QUye + (29(U) + f”(U)U2 +2f"(U)U —2P)Us)
= f”(U)UgHg + f”(U)U2U§y§ + 2f”(U)UU§y£ + QQ(U)Ugyg — 2PU§y§ — 2QUy§

(y§U2 + Ug)t = 2y§y£tU2 + 2y§UUt + 2U5U5t
= 2f"(U)yeUeU? + 23U (=Q) + 2U¢ (3" (U)He — Py — 5 f"(U)Uye + f"(U)Uye + g(U)ye)
= f”(U)Hng + f”(U)UgUny — 2y§UQ + 2f”(U)Uy§U§ — 2PU5y5 + 29(U)U€y§

so (yeHe) = (ygUQ—FUg)t ,and ye He (0) = (y?UQ—i—Ug)(O) , then ye He = y§U2+U§2 almost everywhere.
|

From the above, we know ggﬁg = Q?U 24 ﬁg , and later we will use it to prove ¢, H, U belong to
Whoeo jyhee jyhoe - And if HQH + HU§H + HﬁgH < oo we can prove the solutions exist in [0, 7], for any
time t € [0,7], see [21, Lemma 2.3].
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5(8) ]
Definition 2.2 ¢ = yf (@ +u2)dz +5(&), U =uo0y, H= } (@ +u2)da , y(&) = ¢(&) + ¢,

—00

= {(f,g)l(f,g) € W22 (R) x W,{)g’"(R)} , see [25].
It is easy to prove He > 0, H¢ is an increasing function with respect to £ . We have hm U(t,&) =0

,and H(t,§) = H(0,&) + f [G(U) — 2PU](r,§)dr . Hence we can prove H(t,+o00) = H(0,£00) , so

hgl H(t,§) exists and is 1ndependent of time. Let’s define sup |[H(, )| j00(p) = HﬁHLoo(R) =h.
—Ex (0,77

Lemma 2.4 Given ti € H'(R), the initial date (,U, H) belongs to ().
Proof. Q_g = —(@*+a2)o Yje » Ye = 1+ Eg we get Eg(g) = —% og(&),so 55 is bounded almost
everywhere and ¢ belongs to W1 (R) . ( e = m oy,and 0 < g¢ < 1 almost everywhere, so y
belongs to W1 (R) .)

H = —( and H belongs to W'>*(R) . From g¢ He = 57U* +U¢ , we know UZ < g He , so U belongs
to WH(R) .

For every smooth function ¢ using the change of variable x = y () , and

[uods = [Vt wuede = [UmEo0w) v
R

R R

Jupdz| < 1]l L2 (m) J U?yedé < \/H (o) |6l 2wy Cauchy-Schwarz inequality
R \/ &

For [u] 2y < /H(Z,50) = v/H(0,50) = ] g s see 1261,

[ utn@ris = [ U©0w©me(ede =~ [ Uete)@0 v)(©)ie

R R R

let B = {¢ € Rlye(¢) > 0},

e v¢ ]
L/u%dx - !ﬁgw y)VTEde| < la/yﬁd§JZ<¢ 1)2yedé < VH) 16l s

50 ug € L2(R), [[ue oy < |l g my = VR, Us = ug 0 yye, therefore Us < Vh, and U € WH™(R) .
From all the above, we know ({, U, H) € Q). m

Theorem 2.3 The system of (2.18) has a unique global solution X (t) = (y(t),U(t),H(t)) in C*(Ry,E)
with the initial date X = ((,U, H) .

Proof. Next we will prove sup || X (¢)||p < oo,

t€[0,T]
¢ ¢
U*(&) =2 / U(n)Ug(n)dn = 2 / U(n)Ue(n)dn
e {n<&lye(m)>0}

U] _ 1 (1002 Ue@) _1
e ‘ <3 <U(£) ye (&) + y§(§)> = 5 He(9),

We get U2(&) < H(E),U(t,€) € I := [—vVh,Vh] forallthe t € [0,T],£ € R,

sup [|U(%, )| oo ) < 00
t€[0,T

(U] = '@Ug@
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We get & = || fll 2oy + N9l see [271, €2, €] < [€(0,8)] 4+ KT, so sup [|C(¢, )|l oo () s

te[0,7
bounded.
From (2.16), we know [[g(U)|| 2y < gl gy 1UNl L2 () < kvVh,

1Q(t,6)| < BR[| o~ly(©) =yl (n)dn

R
_ Wgef'y@”'dﬂc = 3kh 4 2kv/h.

So @ ( P) is bounded by a constant that depends only on x, A .
Let

Ca= sup IO ey I gy 16y + Py + 1R ey

( Cy is finite and depends only on || X|| ,, T, )
The same bounds hold for Q, P,
Z(t) = Ut )l + [1¢e (2, )l

Vet + | He(t, )|

L2(R L2(R) L2(R) L2(R)

From all the above, we get

t
Z(t) < Z(0) + C [ Z()dr, by Grownwall’s lemma, sup Z(t) < co, so the solutions exist globally
0 t€[0,7]
in time, and we finish our proof. m
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