

Global Conservative Solutions of the Generalized Camassa-Holm Equation

Lixin Tian *, Yunxia Wang
Nonlinear Scientific Research Center, Jiangsu University
Zhenjiang, Jiangsu, 212013, P.R. China
(Received 12 January 2008, accepted 1 April 2008)

Abstract:In this paper, we prove the existence of global conservative solutions of the Cauchy problem for the generalized Camassa-Holm equation. We transform it into an ODE system in a Banach space. By using the ODE theories and some related knowledge we obtain the existence of the short -time solutions. Particularly we obtain the global conservative solutions with respect to the initial date.

Keywords: generalized Camassa-Holm equation; global conservative solutions; Lipschitz

1 Introduction

In [1], Degasperis and Proesi studied the following family of third order dispersive PDE conservation laws,

$$u_t + c_0 u_x + \gamma u_{xxx} - \alpha^2 u_{txx} = \left(c_1 u^2 + c_2 u_x^2 + c_3 u u_{xx} \right)_x \tag{1.1}$$

where α , c_0 , c_1 , c_2 and c_3 are real constants. They found that there are at least four equations that satisfy the completely integrability condition within this family: KdV equation, Camassa- Holm equation, Dullin-Gottwald-Holm equation and Degasperis- Procesi equation.

With $\alpha = c_2 = c_3 = 0$ in (1.1), it becomes the well-known Korteweg-de Veris equation.

The KdV equation is completely integrable and its solitary waves are solitions [2, 3]. The Cauchy problem of the KdV equation has been studied extensively, and a satisfactory local or global existence theory is proved in [4].

For $c_1=-\frac{3}{2}c_3/\alpha^2$, $c_2=c_3/2$, (1.1) becomes the Camassa-Holm equation.

$$u_t - u_{xxt} + u_x + 3uu_x = 2u_x u_{xx} + uu_{xxx}$$
 (1.2)

It has a bi-Hamiltionian structure and is completely integrable (see [5]). In [6] Dangping Ding and Lixin Tian researched solution of dissipative Camassa-Holm equation on total space. Tian, Song, Yin [7, 8] considered the generalized Camassa-Holm equation and derived some new exact peakon and compacton.

Dullin, Gottwald, Holm [9] discussed the following 1+1 quadratically nonlinear equation in this class for a unidirectional water wave with fluid velocity $u\left(x,t\right)$.

$$m_t + c_0 u_x + u m_x + 2m u_x = -\gamma u_{xxx}, \quad x \in R, \quad t \in R, \tag{1.3}$$

In [10, 11] Lixin Tian, Guilong Gui and Yue Liu studied the well-posedness of the Cauchy problem and the scattering problem for DGH equation.

With $c_1=-2c_3/\alpha^2$, $c_2=c_3$ in Eq.(1.1) , we find the Degasperis-Procesi equation of the form

$$u_t - u_{txx} + 4uu_x = 3u_x u_{xx} + uu_{xxx}, t > 0, \quad x \in R$$
 (1.4)

^{*}Corresponding author. E-mail address: tianlx@ujs.edu.cn

Degasperis, Holm and Hone [12] proved the integrability of (1.4) by constructing a Lax pair. They also showed that Eq.(1.4) has bi-Hamiltonian structure and an infinite sequence of conserved quantities, and admits exact peakon solutions which are analogous to the Camassa-Holm equation. After the Degasperis-Procesi Eq.(1.4) was derived, many papers were devoted to its study. For example, Yin [13] proved local well-posedness to Eq.(1.4) with initial data $u_0 \in H^s(R)$, $s > \frac{3}{2}$ and derived the precise blow-up scenario and a blow-up result. The global existence of strong solutions and global weak solutions to Eq. (1.4) was also investigated in [14, 15, 16, 17].

For the nonlinear partial differential equation

$$u_t - u_{xxt} - \gamma u_{xxx} + f(u)_x - f(u)_{xxx} + \left(g(u) + \frac{1}{2}f''(u)(u_x)^2\right)_x = 0$$

When $f(u)=\frac{1}{2}\gamma u^2$, g(u) contains u^n $(n\geqslant 2)$ term, and we add a dispersive term γu_x , then we get the generalized Camassa-Holm equation

$$u_t - u_{xxt} + \frac{1}{2}g(u)_x - \gamma(2u_x u_{xx} + u u_{xxx} - u_x) = 0$$
(1.5)

This is the equation which we will consider in this paper. When $g(u) = \frac{3-\gamma u^2}{2}$, Eq.(1.5) becomes Eq.(1.2). Here we take a different approach, based on recent techniques see [18, 19, 20, 21]. The equation can be reformulated as a system of ordinary differential equations taking values in a Banach space. In the space, we consider the conservative solutions that preserve the energy. We prove Eq.(1.5) possesses a global conservative solution. Furthermore, we show that the problem is well-posed.

This paper is organized as follows: In Section 2, first we transform the PDE into an ODE system. Short-time existence is derived by a contraction argument, see Theorem 2.3. Global existence with respect to both initial data and functions f and g, is obtained for a class of initial data that includes initial data $u|_{t=0}=\bar{u}$ in $H^1(\mathbb{R})$, see Theorem 2.7.

2 Existence of solutions

2.1 Transport equation for the energy density and reformulation in terms of Lagrangian variables

Eq.(1.5) is rewritten as the following term (see [22,23])

$$u_t + \gamma u u_x + P_x = 0, P - P_{xx} = \frac{1}{2}(g(u) - \gamma u^2 + \gamma u_x^2 + 2\gamma u)$$
(2.1)

It is advantageous to rewrite the equation as

$$u_t + f(u)_x + P_x = 0 (2.2a)$$

$$P - P_{xx} = g(u) + \frac{1}{2}f''(u)u_x^2 + f''(u)u$$
 (2.2b)

where we assume

$$\begin{cases}
f \in W_{loc}^{2,\infty}, f''(u) \neq 0, u \in \mathbb{R} \\
g \in W_{loc}^{1,\infty}, g(0) \neq 0
\end{cases}$$
(2.3)

In (2.2 b), P can be written in explicit form:

$$P(t,x) = \frac{1}{2} \int_{\mathbb{R}} e^{-|x-z|} \left(g \circ u + \frac{1}{2} f'' \circ u u_x^2 + f'' \circ u u \right) (t,z) dz$$
 (2.4)

After differentiating (2.2a) with respect to x and using (2.2b), that

$$u_{xt} + f''(u)u_x^2 + f'(u)u_{xx} + P - g(u) - f''(u)u = 0$$
(2.5)

Multiply (2.2a) by u , (2.5) by u_x , add the two to find the following equation

$$(u^{2} + u_{x}^{2})_{t} + (f'(u)(u^{2} + u_{x}^{2}))_{x} = -2(Pu)_{x} + (2g(u) + f''(u)u^{2} + 2f''(u)u)u_{x}$$
(2.6)

Define

$$G(v) = \int_{0}^{v} (2g(z) + f''(z)(z^{2} + 2z))dz$$
 (2.7)

Then (2.6) can be rewritten as

$$(u^{2} + u_{x}^{2})_{t} + (f'(u)(u^{2} + u_{x}^{2}))_{x} = (G(u) - 2Pu)_{x}$$
(2.8)

which is transport equation for the energy density $u^2 + u_x^2$.

Define

$$y_t(t,\xi) = f'(u(t,y(t,\xi)))$$
 (2.9)

Let the characteristics $y(t,\xi)$ are the solutions of(2.9), suppose $y(0,\xi)$ is given. Given ξ_1,ξ_2 in $\mathbb R$, let $H(t)=\int\limits_{y(t,\xi_1)}^{y(t,\xi_2)}(u^2+u_x^2)dx$ be the energy contained between the two characteristic curves $y(t,\xi_1)$, $y(t,\xi_2)$. Then, we have

$$\frac{dH}{dt} = \left[y_t(t,\xi)(u^2 + u_x^2) \circ y(t,\xi) \right]_{\xi_1}^{\xi_2} + \int_{y(t,\xi_1)}^{y(t,\xi_2)} (u^2 + u_x^2)_t dx. \tag{2.10}$$

We use (2.8) and (2.10) then integrate by parts, then we get

$$\frac{dH}{dt} = [(G(u) - 2Pu) \circ y]_{\xi_1}^{\xi_2} \tag{2.11}$$

We now derive a system equivalent to (2.2). The calculations here are formal and will be justified later. Let y still denote the characteristics. We introduce two other variables, the Lagrangian velocity U and cumulative energy distribution H defined by

$$U(t,\xi) = u(t,y(t,\xi)),$$
 (2.12)

$$H(t,\xi) = \int_{-\infty}^{y(t,\xi)} (u^2 + u_x^2) dx$$
 (2.13)

From the definition of the characteristics, it follows from (2.2a) that

$$U_t(t,\xi) = u_t(t,y) + y_t(t,\xi)u_x(t,y) = (u_t + f'(u)u_x) \circ y(t,\xi) = -P_x \circ y(t,\xi)$$
(2.14)

This last term can be expressed uniquely in term of \boldsymbol{y} , \boldsymbol{U} , and \boldsymbol{H} . Namely, we have

$$P_x \circ y(t, x) = -\frac{1}{2} \int_{\mathbb{R}} sgn(y(t, \xi) - z)e^{-|y(t, \xi) - z|} \left(g \circ u + \frac{1}{2} f''(u)(u_x^2 + 2u) \right) (t, z)dz$$

After the change of variable $z = y(t, \eta)$,

$$\begin{split} P_{x} \circ y(t,x) &= -\frac{1}{2} \int_{\mathbb{R}} sgn(y(t,\xi) - y(t,\eta)) e^{-|y(t,\xi) - y(t,\eta)|} \\ &\times \left(g \circ u + \frac{1}{2} f''(u)(u_{x}^{2} + 2u) \right) (t,y(t,\eta)) y_{\xi}(t,\eta) d\eta \end{split}$$

Finally, since $H_{\xi} = (u^2 + u_x^2) \circ yy_{\xi}$,

$$P_{x} \circ y(t,\xi) = -\frac{1}{2} \int_{\mathbb{R}} sgn(y(\xi) - y(\eta))e^{-|y(\xi) - y(\eta)|} \times \left((g(U) - \frac{1}{2}f''(U)U^{2} + f''(U)U)y_{\xi} + \frac{1}{2}f''(U)H_{\xi} \right) (\eta)d\eta$$
(2.15)

Then $P_x \circ y$ is equivalent to Q where

$$Q(t,\xi) = -\frac{1}{2} \int_{\mathbb{R}} sgn(\xi - \eta) \exp(-sgn(\xi - \eta)(y(\xi) - y(\eta))) \times \left((g(U) - \frac{1}{2}f''(U)U^2 + f''(U)U)y_{\xi} + \frac{1}{2}f''(U)H_{\xi} \right) (\eta)d\eta$$
(2.16)

Slightly abusing the notation, we write

$$P(t,\xi) = \frac{1}{2} \int_{\mathbb{R}} \exp(-sgn(\xi - \eta)(y(\xi) - y(\eta))) \times \left((g(U) - \frac{1}{2}f''(U)U^2 + f''(U)U)y_{\xi} + \frac{1}{2}f''(U)H_{\xi} \right) (\eta)d\eta$$
(2.17)

 $P_x\circ y$ and $P\circ y$ can be replaced by equivalent expressions given by (2.16) and (2.17) which only depend on our new variables U, H, and y. We introduce yet another variable $\zeta(t,\xi)$, simply defined as $\zeta(t,\xi)=y(t,\xi)-\xi$

It will turn out that $\zeta \in L^{\infty}(\mathbb{R})$. We have now derived a new system of equations, which is equivalent to (1. 5). Equations (2.9), (2.11) and (2.14) give us

$$\begin{cases} y_t = f'(u), \\ U_t = -Q, \\ H_t = G(U) - 2PU \end{cases}$$

$$(2.18)$$

Detailed analysis will reveal that the system (2.18) of ordinary differential equations for $(\zeta, U, H) : [0, T] \to E$ is well-posed, where E is a Banach space to be defined in the next section. We have

$$Q_{\xi} = -\frac{1}{2}f''(U)H_{\xi} + \left(P + \frac{1}{2}f''(U)U^2 - f''(U)U - g(U)\right)y_{\xi}$$

and

$$P_{\xi} = Qy_{\xi}.$$

Then differentiating (2.18) yields

$$\begin{cases}
\zeta_{\xi t} = f''(U)U_{\xi}, (y_{\xi t} = f''(U)U_{\xi}) \\
U_{\xi t} = \frac{1}{2}f''(U)H_{\xi} - (P + \frac{1}{2}f''(U)U^{2} - f''(U)U - g(U)) y_{\xi} \\
H_{\xi t} = (2g(U) + f''(U)U^{2} + 2f''(U)U - 2P) U_{\xi} - 2QUy_{\xi}
\end{cases} (2.19)$$

2.2 Existence and uniqueness of solutions in Lagrangian variables

Let V be the Banach space defined by $V = \{ f \in C_b(\mathbb{R}) | f_{\xi} \in L^2(\mathbb{R}) \}$, where $C_b(\mathbb{R}) = C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, and the norm of V is given by $||f||_V = ||f||_{L^{\infty}(\mathbb{R})} + ||f_{\xi}||_{L^2(\mathbb{R})}$.

Of course $H^1(\mathbb{R})\subset V$, but the converse is not true as V contains functions that do not vanish at infinity. We will employ the Banach space E defined by $E=V\times H^1(R)\times V$ to carry out the contraction map argument.

For any $X = (\zeta, U, H) \in E$, the norm on E is given by

$$\|X\|_E = \|\zeta\|_V + \|U\|_{H^1(R)} + \|H\|_V \,.$$

In this section, we focus our attention on the system of Eqs. (2.18) and prove, by a contraction argument, that it admits a unique solution.

Lemma 2.1 ([26]) For any $X = (\zeta, U, H)$ in E, we define the maps Q and P as Q(X) = Q and P(X) = P where Q and P are given by (2.16) and (2.17). Then P and Q are locally Lipschitz maps from E to $H^1(\mathbb{R})$. Moreover,

$$\begin{split} Q_{\xi} &= -\frac{1}{2}f''(U)H_{\xi} + \left(P + \frac{1}{2}f''(U)U^2 - f''(U)U - g(U)\right)y_{\xi}, \\ P_{\xi} &= Q(1 + \zeta_{\xi}) \end{split}$$

Lemma 2.2 ([26]) Let $B_M = \{X \in E | \|X\|_E \leq M\}$ (i) If g_1 is Lipschitz from B_M to $L^\infty(\mathbb{R})$ and g_2 is Lipschitz from B_M to $L^2(\mathbb{R})$, then the product g_1g_2 is Lipschitz from B_M to $L^2(\mathbb{R})$. (ii) If g_1, g_2, g_3 are three Lipschitz maps from B_M to $L^\infty(\mathbb{R})$, then the product $g_1g_2g_3$ is Lipschitz from B_M to $L^\infty(\mathbb{R})$.

Next we will use a contraction argument to prove the short-time existence of solutions to (2.18).

Theorem 2.1 $\bar{X} = (\bar{\zeta}, \bar{U}, \bar{H})$ in E, there exists a time T depending only on $\|X\|_E$ such that the system (2.18) admits a unique solution in $C^1([0,T],E)$ with initial data \bar{X} .

Proof. For any $X=(\zeta,U,H)$, $\bar{X}=(\bar{\zeta},\bar{U},\bar{H})$ in B_M , from (2.18) we know

$$X(t) = \bar{X} + \int_{0}^{t} F(X(\tau))d\tau$$
 (2.20)

For $||U||_{L^{\infty}(\mathbb{R})} \leqslant lM$, $||\bar{U}||_{L^{\infty}(\mathbb{R})} \leqslant lM$,

$$\|f'(U) - f'(\bar{U})\|_{L^{\infty}(\mathbb{R})} \le \|f'\|_{W^{1,\infty}} \|U - \bar{U}\|_{L^{\infty}(\mathbb{R})} \le lL_M \|X - \bar{X}\|_E.$$

(*l* is the Lipschitz constant.)

Since $f'(U)_{\xi}=f''(U)U_{\xi}$, we know $X\to f'(U), X\to U_{\xi}$, are both Lipschitz on B_M , so $X\to f''(U)$ is Lipschitz from B_M into V, see [24]. And $X\to U_{\xi}$ is Lipschitz from B_M into $L^2(\mathbb{R})$, by Lemma 2.2, $X\to G(U)$ is Lipschitz from B_M into $L^2(\mathbb{R})$.

$$F(X) = (f'(U), -Q(X), G(U) - 2P(X)U),$$

where $F:E\to E$, and $X=(\zeta,U,H)$. The integrals are defined as Riemann integrals of continuous functions on the Banach space E. For all the above, we know $X=(\zeta,U,H)\to f'(U), X=(\zeta,U,H)\to G(U), X=(\zeta,U,H)\to P(X), X=(\zeta,U,H)\to U$ are all Lipschitz from B_M to V. Then, using Lemma 2.2, we can check that each component of F(X) is a product of functions that satisfy one of the assumptions of Lemma 2.2, we obtain that F(X) is Lipschitz on B_M . Thus, F is Lipschitz on any bounded set of E. Since E is a Banach space, we can use the standard contraction argument and know the existence of short-time solutions. \blacksquare

Next we will proof the existence of global solutions of (2.18). We will find a particular class of initial data that matches E, see Definition 2.2 In particular, we will only consider initial data that belongs to

$$\Omega = \left\{ (y, U, H) | (y, U, H) \in E \cap \left(W^{1, \infty}(R) \times W^{1, \infty}(R) \times W^{1, \infty}(R) \right) \right\}$$

Lemma 2.3 $y_{\xi}H_{\xi}=y_{\xi}^{2}U^{2}+U_{\xi}^{2}$ almost everywhere.

Proof. In this equality, both of the two sides differenting with respect to t and using (2.19), we get

$$(y_{\xi}H_{\xi})_{t} = y_{\xi t}H_{\xi} + y_{\xi}H_{\xi t}$$

$$= f''(U)U_{\xi}H_{\xi} + y_{\xi}(-2QUy_{\xi} + (2g(U) + f''(U)U^{2} + 2f''(U)U - 2P)U_{\xi})$$

$$= f''(U)U_{\xi}H_{\xi} + f''(U)U^{2}U_{\xi}y_{\xi} + 2f''(U)UU_{\xi}y_{\xi} + 2g(U)U_{\xi}y_{\xi} - 2PU_{\xi}y_{\xi} - 2QUy_{\xi}^{2}$$

$$\begin{array}{l} (y_{\xi}^2U^2+U_{\xi}^2)_t = 2y_{\xi}y_{\xi t}U^2 + 2y_{\xi}^2UU_t + 2U_{\xi}U_{\xi t} \\ = 2f''(U)y_{\xi}U_{\xi}U^2 + 2y_{\xi}^2U(-Q) + 2U_{\xi}\left(\frac{1}{2}f''(U)H_{\xi} - Py_{\xi} - \frac{1}{2}f''(U)U^2y_{\xi} + f''(U)Uy_{\xi} + g(U)y_{\xi}\right) \\ = f''(U)H_{\xi}U_{\xi} + f''(U)U_{\xi}U^2y_{\xi} - 2y_{\xi}^2UQ + 2f''(U)Uy_{\xi}U_{\xi} - 2PU_{\xi}y_{\xi} + 2g(U)U_{\xi}y_{\xi} \end{array}$$

so $(y_{\xi}H_{\xi})_t=(y_{\xi}^2U^2+U_{\xi}^2)_t$, and $y_{\xi}H_{\xi}(0)=(y_{\xi}^2U^2+U_{\xi}^2)(0)$, then $y_{\xi}H_{\xi}=y_{\xi}^2U^2+U_{\xi}^2$ almost everywhere.

From the above, we know $\bar{y}_{\xi}\bar{H}_{\xi}=\bar{y}_{\xi}^2\bar{U}^2+\bar{U}_{\xi}^2$, and later we will use it to prove \bar{y},\bar{H},\bar{U} belong to $W^{1,\infty},W^{1,\infty},W^{1,\infty}$. And if $\|\bar{\zeta}_{\xi}\|+\|\bar{U}_{\xi}\|+\|\bar{H}_{\xi}\|<\infty$ we can prove the solutions exist in [0,T], for any time $t\in[0,T]$, see [21, Lemma 2.3].

It is easy to prove $H_\xi\geqslant 0$, H_ξ is an increasing function with respect to ξ . We have $\lim_{\xi\to\pm\infty}U(t,\xi)=0$, and $H(t,\xi)=H(0,\xi)+\int\limits_0^t [G(U)-2PU](\tau,\xi)d\tau$. Hence we can prove $H(t,\pm\infty)=H(0,\pm\infty)$, so $\lim_{\xi\to\pm\infty}H(t,\xi)$ exists and is independent of time. Let's define $\sup_{t\in[0,T]}\|H(t,\cdot)\|_{L^\infty(R)}=\|\bar{H}\|_{L^\infty(R)}=h$.

Lemma 2.4 Given $\bar{u} \in H^1(\mathbb{R})$, the initial date $(\bar{y}, \bar{U}, \bar{H})$ belongs to Ω .

Proof. $\bar{\zeta}_{\xi}=-(\bar{u}^2+\bar{u}_x^2)\circ \bar{y}\bar{y}_{\xi}$, $\bar{y}_{\xi}=1+\bar{\zeta}_{\xi}$ we get $\bar{\zeta}_{\xi}(\xi)=-\frac{\bar{u}^2+\bar{u}_x^2}{1+\bar{u}^2+\bar{u}_x^2}\circ \bar{y}(\xi)$, so $\bar{\zeta}_{\xi}$ is bounded almost everywhere and $\bar{\zeta}$ belongs to $W^{1,\infty}(\mathbb{R})$. ($\bar{y}_{\xi}=\frac{1}{1+\bar{u}^2+\bar{u}_x^2}\circ \bar{y}$, and $0<\bar{y}_{\xi}<1$ almost everywhere, so \bar{y} belongs to $W^{1,\infty}(\mathbb{R})$.)

 $ar{H}=-ar{\zeta}$ and $ar{H}$ belongs to $W^{1,\infty}(\mathbb{R})$. From $ar{y}_{\xi}ar{H}_{\xi}=ar{y}_{\xi}^2ar{U}^2+ar{U}_{\xi}^2$, we know $ar{U}_{\xi}^2\leqslant ar{y}_{\xi}ar{H}_{\xi}$, so $ar{U}$ belongs to $W^{1,\infty}(\mathbb{R})$.

For every smooth function ϕ using the change of variable $x=y(\xi)$, and

$$\int_{\mathbb{R}} u\phi dx = \int_{\mathbb{R}} U(\phi \circ y) y_{\xi} d\xi = \int_{\mathbb{R}} U \sqrt{y_{\xi}} (\phi \circ y) \sqrt{y_{\xi}} d\xi,$$

$$\left|\int_{\mathbb{R}} u\phi dx\right| \leqslant \|\phi\|_{L^{2}(\mathbb{R})} \sqrt{\int_{\mathbb{R}} U^{2} y_{\xi} d\xi} \leqslant \sqrt{H(\infty)} \|\phi\|_{L^{2}(\mathbb{R})}$$
 Cauchy-Schwarz inequality For $\|u\|_{L^{2}(\mathbb{R})} \leqslant \sqrt{H(t,\infty)} = \sqrt{H(0,\infty)} = \|\bar{u}\|_{H^{1}(\mathbb{R})}$ see [26],

$$\int u\phi_x(x)dx = \int U(\xi)\phi_x(y(\xi))y_{\xi}(\xi)d\xi = -\int U_{\xi}(\xi)(\phi \circ y)(\xi)d\xi,$$

let $B = \{ \xi \in \mathbb{R} | y_{\xi}(\xi) > 0 \}$,

$$\left| \int\limits_{\mathbb{R}} u \phi_x dx \right| = \left| \int\limits_{B} \frac{U_\xi}{\sqrt{y_\xi}} (\phi \circ y) \sqrt{y_\xi} d\xi \right| \leqslant \sqrt{\int\limits_{B} \frac{U_\xi^2}{y_\xi}} d\xi \sqrt{\int\limits_{B} (\phi \circ y)^2 y_\xi d\xi} \leqslant \sqrt{H(\infty)} \, \|\phi\|_{L^2(\mathbb{R})} \,,$$

so $u_x \in L^2(\mathbb{R}), \|u_x\|_{L^2(\mathbb{R})} \leqslant \|\bar{u}\|_{H^1(\mathbb{R})} = \sqrt{h}, U_\xi = u_x \circ yy_\xi$, therefore $U_\xi \leqslant \sqrt{h}$, and $U \in W^{1,\infty}(\mathbb{R})$. From all the above, we know $(\bar{\zeta}, \bar{U}, \bar{H}) \in \Omega$.

Theorem 2.3 The system of (2.18) has a unique global solution X(t) = (y(t), U(t), H(t)) in $C^1(\mathbb{R}_+, E)$ with the initial date $\bar{X} = (\bar{\zeta}, \bar{U}, \bar{H})$.

Proof. Next we will prove $\sup_{t \in [0,T]} \|X(t)\|_E < \infty$,

$$U^{2}(\xi) = 2 \int_{-\infty}^{\xi} U(\eta)U_{\xi}(\eta)d\eta = 2 \int_{\left\{\eta \leqslant \xi \mid y_{\xi}(\eta) > 0\right\}}^{\xi} U(\eta)U_{\xi}(\eta)d\eta$$

$$|U(\xi)U_{\xi}(\xi)| = \left|\sqrt{y_{\xi}}U_{\xi}(\xi)\frac{U_{\xi}(\xi)}{\sqrt{y_{\xi}}}\right| \leqslant \frac{1}{2}\left(U(\xi)^{2}y_{\xi}(\xi) + \frac{U_{\xi}^{2}(\xi)}{y_{\xi}(\xi)}\right) = \frac{1}{2}H_{\xi}(\xi),$$

We get $U^2(\xi)\leqslant H(\xi)$, $U(t,\xi)\in I:=[-\sqrt{h},\sqrt{h}]$ for all the $t\in[0,T],\xi\in\mathbb{R}$, $\sup_{t\in[0,T]}\|U(t,\cdot)\|_{L^\infty(\mathbb{R})}<\infty$.

We get $\kappa = \|f\|_{W^{2,\infty}(I)} + \|g\|_{W^{1,\infty}(I)}$ see [27], $|\zeta(t,\xi)| \leq |\zeta(0,\xi)| + \kappa T$, so $\sup_{t \in [0,T]} \|\zeta(t,\cdot)\|_{L^{\infty}(\mathbb{R})}$ is bounded.

From (2.16), we know $||g(U)||_{L^2(R)} \le ||g||_{W^{1,\infty}(R)} ||U||_{L^2(R)} \le k\sqrt{h}$,

$$\begin{split} |Q(t,\xi)| &\leqslant \tfrac{3kh+4k\sqrt{h}}{4} \smallint_{\mathbb{R}} e^{-|y(\xi)-y(\eta)|} y_{\xi}(\eta) d\eta \\ &= \tfrac{3kh+4k\sqrt{h}}{4} \smallint_{\mathbb{R}} e^{-|y(\xi)-x|} dx = \tfrac{3kh}{2} + 2k\sqrt{h}. \end{split}$$

So Q (P) is bounded by a constant that depends only on κ,h . Let

$$C_2 = \sup_{t \in [0,T]} \left\{ \left\| U(t,\cdot) \right\|_{L^{\infty}(\mathbb{R})} + \left\| H(t,\cdot) \right\|_{L^{\infty}(\mathbb{R})} + \left\| \zeta(t,\cdot) \right\|_{L^{\infty}(\mathbb{R})} + \left\| P(t,\cdot) \right\|_{L^{\infty}(\mathbb{R})} + \left\| Q(t,\cdot) \right\|_{L^{\infty}(\mathbb{R})} \right\}$$

(C_2 is finite and depends only on $\left\| ar{X} \right\|_E, T, \kappa$)

The same bounds hold for Q, P,

$$Z(t) = \left\| U(t, \cdot) \right\|_{L^2(\mathbb{R})} + \left\| U_{\xi}(t, \cdot) \right\|_{L^2(\mathbb{R})} + \left\| \zeta_{\xi}(t, \cdot) \right\|_{L^2(\mathbb{R})} + \left\| H_{\xi}(t, \cdot) \right\|_{L^2(\mathbb{R})}$$

From all the above, we get

 $Z(t)\leqslant Z(0)+C\int\limits_0^t Z(\tau)d\tau$, by Grownwall's lemma, $\sup\limits_{t\in[0,T]}Z(t)<\infty$, so the solutions exist globally in time, and we finish our proof. \blacksquare

Acknowledgements

Research was supported by Outstanding Personnel Program in Six Fields of Jiangsu Province (No: 6-A-029) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, P. R. C. (No: 2002-383)

References

- [1] A. Degasperis, M. Proceci: Asymptotic integrability, Symmetry and Perturbation Theory. *World Scientific*. 23-37(1999)
- [2] P.G. Drazin, R.S. Johnson: Solitions. Cambridge University (1989)
- [3] H.P. Mckean: Integrable systems and algebraic curves. *Global Analysis, Springer Lecture Notesin Mathematicas*. 755:83-200 (1979)
- [4] C. Kenig, G. Ponce, L. Vega: ell-posedness and scattering results for the generalized Korteweg-de Veris equation via the contraction principle. *Comm, PureAppl.Math.*46:527-620 (1993)
- [5] R. Camassa, D. Holm: An integrable shallow water equation with peaked solitions. *Phy.Rev.Letters*. 71:1661-1664 (1993)
- [6] Dangping Ding, Lixin Tian: The study of solution of dissipative Camassa-Holm equation on total space. *International Journal of Nonlinear Science*. 1(1): 37-42 (2006)
- [7] Tian, L.,Song, X.: New peaked solitary wave solutions of the generalized Camassa-Holm equation. *Chaos, Solitons and Fractals.* 19(3):621-637 (2004)
- [8] Tian, L., Yin, J.: New Compacton solutions and solitary solutions of fully nonlinear generalized Camassa-Holm equation. *Chaos, Solitons and Fractals*. 20(4):289-299 (2004)

- [9] Dullin, R., Gottwald, G., Holm, D.: An integrable shallow water equation with linear and nonlinear dispersion. *Phys.Rev. Lett.* 87(9):4501–4504 (2001)
- [10] Lixin Tian, Guilong Gui and Yue Liu: On the well-posedness problem and the scattering problem for the Dullin-Gottwald-Holm equation. *Commun. Math. Phys.*257, 667-701 (2005)
- [11] Dianchen Lu, Dejun Peng, Lixin Tian: On the well-posedness problem for the generalized Dullin-Gottwald- Holm equation. *International Journal of Nonlinear Science*.1(1): 178-186 (2006)
- [12] A. Degasperis, D.D. Holm, and A.N.W.Hone: A New Integral Equation with Peakon Solutions. *Theoretical and Mathematical Physics*. 133:1463-1474 (2002)
- [13] Z. Yin: On the Cauchy problem for an integrable equation with peakon solutions. *Illinois J.Math.* 47:649-666 (2003)
- [14] Z. Yin: Global weak solutions to a new periodic integrable equation with peakon solutions. *J.Funct.Anal.* 212:182-194 (2004)
- [15] Z. Yin: Global solutions to a new integrable equation with peakons. *Indiana Univ. Math. J.* 53:1189-1210 (2004)
- [16] Lixin Tian, Xiuming Li: On the Well-posedness problem for the Generalized Degasperis- Procesi equation. *International Journal of Nonlinear Science*. 2:67-76 (2006)
- [17] Lixin Tian, Meijie Ni: Blow-up Phenomena for the Periodic Degasperis- Procesi equation with Strong Dispersive Term. *International Journal of Nonlinear Science*. 2:177-182 (2006)
- [18] A. Bressan, A. Constantin: Global conservative solutions of the Camassa–Holm equation, *Arch. Ration.Mech.Anal.* In press
- [19] A. Bressan, M. Fonte: An optimal transportation metric for solutions of the Camassa–Holm equation, *Methods Appl. Anal.* 12:191–200 (2005)
- [20] J. Málek, J. Necas, M.Rokyta, M.Ruzicka: Weak and Measure-Valued Solutions to Evolutionary PDEs, *Chapman& Hall, London.* (1996)
- [21] H. Holden, X. Raynaud: Global conservative solutions of the Camassa–Holm equation—a Lagrangian point of view. *Comm. Partial Differential Equations*. In press
- [22] G.M. Coclite, H. Holden, K.H. Karlsen: Well-posedness for a parabolic–elliptic system. *Discrete Contin. Dyn.Syst.* 13:659-682 (2005)
- [23] G.M. Coclite, H. Holden, K.H. Karlsen: Global weak solutions to a generalized hyperelastic-rod wave equation. *SIAM J. Math. Anal.* 37:1044-1069 (2005)
- [24] M. Fonte: Conservative solution of the Camassa–Holm equation on the real line. math. AP/0511549.
- [25] G.B. Folland: Real Analysis, seconded. Wiley, New York (1999)
- [26] H. Holden, X. Raynaud: Global conservative solutions of the generalized hyperelastic-rod wave equation. *J.Differential Equations*. 233:448-484 (2007)
- [27] K. Yosida: Functional Analysis. Berlin (1995)