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Abstract: This paper studies the property of the solution near the travelling wave Q of the second-order
Camassa-Holm equation in the space H?2. The solution near the travelling wave is decomposed into A2 (tu(z+
x(t)) = Q(x) + (¢, ) by pseudo-conformal transformation. It is demonstrated that € can be controlled by
a fast-decaying exponential function when the initial value of ¢ is controlled by a fast-decaying exponential
function. The solution of the second-order Camassa-Holm equation is equivalent to the travelling wave Q
(up to scaling and translation) is proved when the solution exists globally.
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1 Introduction

In [1-3], Merle and Martel studied the Cauchy problem of the critical generalized KdV equation in the space L?:

)

u + (Ugy +u®), =0,(t,z) €[0,T) x R,
u(0,2) = ug(z),z € R.

Let Q* be the travelling wave of the KdV equation, )y be the scaling invariant and zy be the translation invariant.
Assuming that there exists a sequence u,, of solutions which satisfies H! bound, L? compact and |u, (0) — Q* |1 —
0,n — +o00, Martel and Merle proved that

ult, ) = A2 O* (Mo(z — x(x0)) — A3).

On the other hand, in 2003, Constantin and Kolev ™ studied the infinite-dimensional Lie group of all smooth
orientation-preserving diffeomorphisms of the circle with a Riemannian structure, they obtained a geodesic equation:

up = Aj(le(u) — Uy, k € N, 2)
where
u=u(t,),(t,r) € RT x R,
k . .
Ag(u) =Y (=107 u,
j=0
and

Cr(u) = —udy(ug) + Ap(vuy) — 2u, A (u).
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We denote the convolution by *. The operator A,;l is given by the following convolution form:
AN = xS = [ Pue =)« f)dno € B

pk is the Fourier transform of Py:
A 1

Py, = :
k 1+€2+...+§2k

When k > 2, equation (2) is the higher-order Camassa-Holm equation. When k& = 2, equation (2) is the second-order
Camassa-Holm equation:

V¢ € R.

Ut — Utggy T Utzzzr = 2uwumw - 3uux + Uz — 2uwuwazww - uumwwmwvt > 07 T € R. (3)
Equivalently, equation (3) can be rewritten as the following form:

Uy = P2 * (2u$u:mc - 3uum + Ulggy — 2uwuzmmx - uumxzrx)7 (4)
N = VBo—Llalgin(lzl 4Ty 4
where P (z) = 57e™ 2 *lsin(5 + §),7 € R.
In 2011, Tian, Zhang and Xia 1! proved that if ug € H*(R),s > %, the strong solution of equation (3) exists globally.
They also obtained a conservation law of the second-order Camassa-Holm equation:

/ u2(t, x) + ui(t, x) + uiz(t, x)dx = / u%(x) + uoi(x) + uoim(:c)dx. 5)
R R

In 2017, Ding [® studied the travelling wave solutions of the higher-order Camassa-Holm equation. By the travelling
wave transformation u(t, x) = Q(x — ct), the travelling wave solution of the second-order Camassa-Holm equation is as
follows:

: —ct —ct
Ae— 5 (a—ct) <cosz 20 +\/§sinx 28 ) ,x > ct,

xr —ct xr—ct
Ae 5 (@—ct) <cos 5~ 3sin 5 >,m<ct,

Qalx —ct) = (6)

where A > 0 is the amplitude, ¢ > 0 is the velocity and A is related to c.

There are also many papers about higher-order Camassa-Holm equation, such as [7-9].

In contrast to KdV equation, because of the loss of regularity of soliton, the methods of a series of works from Merle
and Martel aren’t available to the Camassa-Holm equation. In 2018, Molinet ' proved a Liouville property for uniformly
almost localized H !-global solutions of the Camassa-Holm equation with a momentum density that is a non-negative finite
measure. It should be noticed that the travelling wave of the second-order Camassa-Holm equation belongs to space H?,
but the soliton of the Camassa-Holm equation belongs to space H'. Inspired by a series of works from Merle and Martel
in [1-3] and Molinet’s research in [ 10], we study the property of the solution of the second-order Camassa-Holm equation.
The Cauchy problem of the second-order Camassa-Holm equation is as follows:

u(0, z) = up(z). (7

{Ut — Utzz + Utzzer = 2Uglpr — SUUy + Ulgrr — 2UpUzzer — UWlzzaze,t > 0,7 € (—OO, 0) U (0, +OO)7

By pseudo-conformal transformation, we decompose the solution of the second-order Camassa-Holm equation near
the travelling wave Q into

A2 (u(t,x + (t)) = Q+e(t, z).

Let ag = sup;> ||€| > and let a be a positive constant. We define a neighborhood with Q as the center and « as the
radius:

Ua = {u € H*(R); inf [lu(-) = Q(- + 1)l < a}.
T
Let A(t) be the scaling invariant and x(¢) be the translation invariant, then the solution of equation (3) satisfies the

following invariances:
(a) Translation invariance: if u(t, z) is a solution of equation (3), then u(t, x 4+ x(t)) is also a solution of equation (3);
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(b) Scaling invariance: if u(¢, z) is a solution of equation (3), then Az (¢)u(\2 (£)t, z) is also a solution of equation (3).
From the proposition 3.1 in [11], there exist scaling invariant A’ (¢) and translation invariant 2’ (t), such that

(et 2), Qu) = (£(t, 7)), Quz) = 0

We define that the A(t) and z(t) in the following paper are geometric parameters that satisfy the above orthogonality.
We have the following result:

Theorem 1 Suppose
uo € Uy = {u € H*(R); inf [[u() = Q( + 1) n2 < o},

and assume that there exists a constant Cy > 0, such that
||'LLO||H2 Z Cl.

Let eg = ug — Q, which satisfies
V3
leo] < e Tl 2 > 0.

If the solution of the Cauchy problem (7) exists globally in the space H?, there exist scaling invariant \o(t) € C and
translation invariant xo(t) € C', such that

ult, ) = Ay 2 (H)Q (x — zo(t)).

2 Properties of ¢

For convenience, we take A = 1 and denote { = x — ct in (6), so

(S

L]

Q=0 =2 2

sm(

o |
\./

and

)

Over — 4v/3e” 24605(2 z),¢>0
¢ —4\[@TCCOS(§ -%),¢<0

where the third order derivative of Q is not continuous at the point ¢ = 0.

Property 2 (O1)Boundedness of \: Suppose that there exists a constant C1 > 0, such that
[uol| 2 > Ch.
There exist A1, Ao > 0, such that
VE >0, A1 < At) < Ao
(O2)!11 Uniform boundedness of ||| gz If |uo — Q|| gz < aw, there exists a constant C3 > 0, such that
llell g2 < Cexo.

Proof. (O1) Due to C; < ||ug|| g2 and the conservation law:

/R u + u yydy /Rug + Uo?, + uozydy,

one gets
C1 < ||ul| g2-

Since |lug — Q|| g2 < ap, we have
luoll > < || QI a2 + 0.
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Therefore,
Cy < lullg> < Co, 3)
1
where Co = || Q|2 + ap = o + (2V/3).
Since A2 (t)u(A2 (£)t, y) is a solution of equation (4), one gets
C1 < A2 (Bu(Az (1)t,) | = < Co. ©)
So there exist A\, A2 > 0, such that
vt > 0,01 < A() < Ao
(O9) Tt is detailed in Lemma 4.3 in [11]. m
To derive the governing equation of <:
Setting
olt.y) = A2 (Du(t,y + (1)), (10)
one gets
1
e(t,y) =v(t,y) — Qy) = A2 Qult,y + =(t)) — Qy). (11)
We have 1
vy = 5)\_%)\,511—1—)\%11,5—1—)\%%1@7 (12)
vy = )\%uy, (13)
and )
Vyy = AZUyy. (14)
Applying (12)-(14) to equation (4), one has
1
)\%vt — 5)\_%)%1) — )\%xtvy = Py x (20yUyyy — 300y — 20yVyyyy — VWyyyyy + V0yyy)- (15)
Setting
boar d 1
s = / ——— or equivalently @ —, (16)
0 Az(t') dt Az (t)
one has L)
Vg = 5781) + 2,0y + Po % (20yVyyy — 300y — 20y Uyyyy — Vlyyyyy + V0yyy)- 17
Thus, we obtain
1) 3 5
Vs = 530 + x50y — Pax (3vvy — vyvyy) + Poy * (ivyy — VVyy) — Payy x (UyUyy) — Payyy * (V0yy — 0yvyy ).
(18)
Applying v(s,y) = Q(y) + (s, y) to (18), we obtain
1A 1A
ss—msay:575+57Q+x59y+(¥(6)7 (19)
where
3
G(e)= |—Po* (3QQ, — QyQyy) + Py, x (§Q§y —QQy,) — Py % (Qyny) — Payyy * (Qny - Qyny)}
[ 3
+ | P2 % (3Qey — Qyeyy) + Pay * (igyysyy — Qeyy) — Payy * (Qyeyy) — Payyy * (Qeyy — ngyy)}
[ 3
+ | —P2x (3eQy — £y Qyy) + Pay * (ignyyy —€Qyy) — Payy * (64 Quy) — Payyy * (€Qyy — %ny)}
[ 3
+ | = P2 * (3eey —eyeyy) + Doy x (igiy —eeyy) — Payy * (EyEyy) — Payyy * €85y — €yEyy)
) (20)
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Lemma 3 There exists constants Cs > 0 and 79 > 0, such that |G(g)| < Cs(az + 1)e‘§7‘)‘y|,y €R

Proof. For convenience, we divide G(¢) into two parts: G1(g) and Ga(¢), where

3
Gi(e) = {_PQ * (3QQy — QyQyy) + Pay * (igf;y —QQyy) — Payy # (QyQuy) — Payyy * (QQyy — Qyny)}
3
+ [_P2 * (3Qey — Qyeyy) + Poy * (§ny5yy — Qeyy) — Payy * (Qyeyy) — Payyy * (Qeyy — ngyy)]

3
+ [_P2 * (3eQy — €y Qyy) + Poy * (58yy Quy — €Qyy) — Payy * (€4 Quy) — Poyyy * (€Qyy — 5yny)] )

2
and 5
Ga(e) = =Py * (3eey — eyeyy) + Py * (5532”; —eeyy) — Payy * (eyeyy) — Payyy * (e8yy — eyeyy)-
To estimate G (¢):
Letting
3
P+ | [-300, - 0,0,) + (383, - 00) - (©,0,) - (99, - 0,0,)]
3
+ {_(39574 — Qyeyy) + (igyygyy — Qeyy) — (Qyeyy) — (Qeyy — ngyy)}
3
+ [(3591/ —&yQyy) + (§5yygyy —eQyy) — (yQyy) — (€Qyy — syny)} ;
we have
IG1(e)| < 2e= 2 W & F(y) = 2/ e E =Tl P(r)dr + 2/ e E 1=l F(r)dr.
lyl<|7| ly|>I7]
Case I: When |y| < |7|, there exists a constant 73 > 0, such that |7| = (1 + 7)|y|. we have 7 = (1 + 71)y or

T=—(14+m)y.
If 7 = (1 + 7))y, then

/ e Flu—l. F(r)dr = / e~ Fly—(+myl . F(r)dr = e E Tyl / F(r)dr.
lyl<|7] ly|<|7]

lyl<|7|
Ifr=—-(1+mn)y,

/ e_g‘y_T| - F(r)dr = / €—§|y+(1+n)y| - F(r)dr = e_g(%'n)‘y‘ / F(r)dr.
ly|<|7| ly|<|7]

ly|<|7|

Therefore,
/ e Tl p(r)dr < e T / F(r)dr.
ly|<|7| ly|<|7|
Case II: When |y| > |7], there exists a constant 75 > 0, such that |7| = (1 — 72)]y|.
From triangle inequality, we know

/ e F vl F(r)dr < / e F vl=I7D) . F(r)dr = e F 2l / F(r)dr. 21
ly[>|7] ly>||

ly[>|7]

Combining case I and case II, we obtain

G1(e)] < 2~ F M /

lyl<I|

F(r)dr + 2e= 2 2lul / F(r)dr
lyl>7]
< 2(67§n|y| + ef§rz|yl)/ F(r)dr
" (22)

1
2

< 2093 + (2v3) %] F I (5]le ] 12 + 4lle]l i + 5lle]l e +1)
1
< 28[9v/3 + (2v/3)*](ag + 1)e % ™olv!

< 04(a2 —+ 1)67§70|9‘7
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where 79 = min{7y, 7} and Cy = 28[9v/3 + (2v/3)7].
To estimate G (¢):

3
|Ga(e)| = ‘_P2 * (3eey — eyeyy) + Poy * (5551; — geyy) — Payy * (ey€yy) — Payyy * (€8yy — €yEyy)
_\B 3
<2 Tl 4 —(3eey —eyeyy) + (5312;1; — eeyy) — (EyEyy) — (Eyy — EyEyy)| -
Letting R(y) = |—(3eey — eyeyy) + (362, — 5yy) — (e42yy) — (€6yy — £y€yy) |, One obtains

Gale)| < 26~ %Wl « R(y) = 2/

ly|<|7|

e Tl R(T)dr + 2/ Ce %=l 4 R(7)dr.

ly[>|7]

Similar to |G (g)], it is clear that

1Ga(e)| < Q(e—énly\ +e—§Tz|y\)/R(7)
— Byl 3
< 26T W [lellfya 4 Blel e llellzn + 2lellzz el ae) @)

-
< 13age=2 vl

In summary, |G(g)| < Cs(az + 1)67§70‘y|, where C5 = Cy + 13.
The proof is completed. m

3 Estimate of ¢
Lemma 4 Leto(y) = £(0,y). If |eo(y)] < e*§|y|, there exist C1g > 0 and 7' > 0, such that

le(s,y)| < Ciolas + 1)6_§7—/y(1 + e‘gs#),Vy > 0.

Proof. Equation (19) can be rewritten as

1A
Es_xsgy:§75+f1+f27 (24)

where f1 = 2320 + 2,0, and f> = G(e).

To remove the term %%5 in equation (24), we introduce the following transformation:

1

n(s,y) = A" 2(s)e(s,y),s > 0. (25)
Therefore, equation (24) can be rewritten as
Ns — Lshy = g1 + g2, (26)
where )
g1 = QTSQ + stgp
and

3
92 = [_P2 * (3QQy — QyQyy) + Pay * (igz?;y = QQyy) — Payy x(QyQyy) — Payyy * (QQyy — Qyny)]

1 3
+A? {PQ * (3Qey — Qyeyy) + Poy * (§ny5yy — Qeyy) — Payy * (Queyy) — Payyy * (Qeyy — Qyé‘yy)}

1 3
+ Az {_P2 * (3eQy — €y Qyy) + Pay * (igyygyy —eQuy) — Payy * (69 Qyy) — Payyy * (€Qyy — 6yny)}

3
+ A [_PQ * (3egy — eyeyy) + Poy * (5512”; —eyy) = Payy * (EyEyy) — Poyyy * (8yy — Eyf:‘yy):| .
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Let
n(s,y) =n(s,y + x(s)),s > 0, 27)
then equation (26) can be rewritten as
s = g1+ G2, (28)
where
7= 520+ 2.0,
and

3 _ . o . . o
7sz — QQyy) — Payy * (QyQyy) — Payyy * (QQyy — ngyy)}

T = |:—P2* (3QQy — QyQyy) + Poy * (2

R
A [PQ * (397, — Qylyy) + Poy * (igy?myy — Qeyy) — Payy * (Qlyy) — Payyy * (0, — Qynyy)}

N

- R — _ .
+ A [_PZ * (3NQy — 1, Qyy) + Pay * (inyygyy = MQyy) — Payy * (M, Qyy) — Payyy * MQyy — nyny)}

_ - o _ 3 L _ - _ L o
+A [_P2 * (3777721 - nynyy) + Pay * (57772/7; - nnyy) — Py, * (nynyy) = Payyy * (nnyy - nynyy)} :
Due to (5.6) in [11], one obtains |z — 1| < Cga, more precisely
—Cea+1<z, <Cga+1.

Let a < ﬁ, then z, > 3. By integration, we have z(s) > 3s,s > 0.
Furthermore, one gets

Q= Q(y+a(s)) < e FWHOl < =P WwHs) y 5 0, (29)
From (5.6) in [11] and (29), one obtains

1A

71 = 1550 + 2.9, < 2Cg(az + 1)e= % (w+ds), (30)

For convenience, we divide g5 into two parts: go1 and gs2, where

3 . . o . . o
7Q§y — QQyy) — Payy * (QyQyy) — Payyy * (QQyy — Qyny)}

o1 = {—Pz* (3QQ, — QyQyy) + Py * (2

e
A [_PQ * (397, — Q) + Poy * (ngyUyy — Q) — Payy x (QyTly,) — Payyy * (9, — Qynyy)}

=

— _ _ — 3 _ — _ _ _ _
+ A [_P2 * (3ﬁQy - ﬁygyy) + P2y * (iﬁyygyy - ﬁny) - P2yy * (ﬁygyy) - P2yyy * (ﬁny - nyny)} )

and
__ S e - = /3.0 R S = __ _
922 = A _P2 * (STlny - nynyy) + P2y * (inyy - nnyy) - P2yy * (nynyy) - Pnyy * (nnyy - nynyy) .

Similar to |G ()|, one obtains

1 31 VB T e _ _
g1 < 2(9V3Xo? + (2V/3)%]e ™ W (5|[77]| 2 + 4] 7| g2 + 5|77]| > + 1)

< Crlag + 1)e 5 oWt 30,

€29

and

__ B3 — _ _ _ _
922 < 2X0e” 2 °'y'(§llnllip + 3[ml 2 7l e + 207l 21171 £r2) 2)

V3 1
—5=T10(y+35s
< Cgaze™ 2 °Wtas),
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where 7o = min{m, 72}, Cy = max{28[9v3A2 + (2v/3)2]A7 %, 28[9v/3A2 + (2v/3)%]} and Cs = 13)A] L.
We obtain [gz| < |g21] + |g2z2] < Co(az + 1)e‘§70(y+%5), where Cy = max{2C7, 2Cs}.

Hence N
@), = 71| + 93] < (Co +2Cs)(ag + 1)e= = 7 WH29), (33)

where 7/ = min{r, 1}.
By integration, we get

_ 2 Byl _

s 9)| < (Co+200) 2 (aa + e 5704 (0. 34
Due to (25) and (27), one has (s, y) = A~ 2 (s)e(s, y — z(s)).
Therefore, )

V3 1 1 _1
le(s, )| < (Co + 2C¢) (az + 1)e 27 WH39) 4 A7),

V37

. V3
Since |gq| < 6’73-’/,;/ > 0, we get

le(s,y)| < Ciolas + 1)e‘§"/y(1 + e—%s#%

2 -
T

The proof is completed. m

4 A property of the solution of the second-order Camassa-Holm equation

To prove theorem 1:
Proof. Assume that (s, y) £ 0. According to the continuity of (s, y), there exists a sequence €,,(s,y) = (s, yYn) Of
solutions of equation (19), such that |e,,| > 0.

Theref()l‘e, 1t 18 Clear that
En TnsEn )\ . En )\ . Tn Y En 35

Letting y,, — 400 and combining lemma 3, lemma 4 and decay property of Q and Q,, one gets
Ens — TnsEny = 0. (36)

Since
az,, = sup |len g2,
s>0

there exists so > 0, such that ||e,, (s0)|| g2 > “3=.
Setting
enlS+ S0,y
wn(say) = ﬂ( 0 )7
a2y
One gets
Wns = TnsWny = 0. 37
Due to (s0) )
EnlSo
lwn (0)ll 2 = =112 = 3, (38)
azy, 2
one has
wn(s) £ 0.
On the other hand, since the characteristic line equation of equation (37) is
dwns _ Wy
:i);t O’ d;t/ =0 ’
dwy __
du
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one gets w,, = C, where C'is a constant.
Due to (ep,, Qy) = (€n, Qyy) = 0, we obtain (wy,, Qy) = (wn, Qyy) = 0. It follows that

¢ [ ody=c [ Qudy=o,
R R

Q= e_g‘ylx/gsin(% + %)

where

Due to [, Q,,dy # 0, we have
w, =C=0. 39

However, (39) is contradicted to wy,(s) # 0. So we have ¢ = 0, and conclude that there exist A\g(¢) and zo(t) € C*, such
that

u(t,y) = Ay 2()Q (y + z0(1))

The proof is completed. m
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