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Abstract: In this paper, we study the following generalized Camassa-Holm equation with both cubic and
quadratic nonlinearities:

my + k1 (Buum + u2mm) + ka(2mug + mau) =0, M= U — Ugy,

which is presented as a linear combination of the Novikov equation and the Camassa-Holm equation with
constants ky and k5. The model is a cubic generalization of the Camassa-Holm equation. In this paper it is
shown that the equation admits single-peaked soliton and periodic peakons.
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1 Introduction
The well-known Camassa-Holm(CH) equation
my +umg + 2u,m =0, m=1u— Uz, (1)

which was proposed by Camassa and Holm as a nonlinear model for the unidirectional propagation of the shallow water
waves over a flat bottom with u(x, t) representing the water’s free surface [6, 17, 18]. It has attracted much attention in the
past decades. In addition, the CH equation (1) has several nice geometrical structures, for example, its description about
a geodesic flow on the diffeomorphism group on the circle [19] and its derivation from a non-stretching invariant planar
curve flow in the centro-equiaffine geometry [16]. Moreover, well-posedness theory and wave breaking phenomenon of
the CH equation were studied extensively, and many interesting results have been deduced, see [2, 7-9, 26]. The stability
and interaction of peakons were discussed in several references [10, 11, 25]. Among these properties, a remarkable one is
that it admits the single peakons and periodic peakons in the following forms

we(z,t) = ce”lE=etl o e R, 2)
and ]
ue(x,t) = sh(;/Q) Ch(§ —(x—ct)+ [z —ct]), ceR, 3)

where the notation [z] denotes the largest integer part of the real number z € R.

In addition to the CH equation being an integrable model with peakons, other integrable peakon models, which include
the Degasperis-Procesi equation and the cubic nonlinear peakon equations [3, 20], have been found. Indeed, two integrable
CH-type equations with cubic nonlinearity have been discovered recently. The first one is mCH equation:

my + [(u2 — ui)mLC =0, m=1u— Uz, 4)
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and the second one is the so-called Novikov equation:
Up — Uty + AU Uy = BUlUglUpy + uQumz, t>0, xzeR. &)

The perturbative symmetry approach [5] yielded necessary conditions for PDEs to admit infinitely many symmetries.
Using this approach, Novikov [20] was able to isolate Eq.(5) in a symmetry classification and also found its first few
symmetries. He subsequently found a scalar Lax pair for it, and also proved that the equation is integrable. By defining a
new dependent variable m, Eq.(5) can be written as

mg + u2mm + 3uu,m =0, m=u— Ugg- (6)

Analogous to the Camassa-Holm equation, the Novikov equation has a bi-Hamiltonian structure and an infinite se-
quence of conserved quantities. In addition, the single-peaked solutions of the Novikov equation was obtained by Hone
and Wang in [3], which takes the form

u(t,z) = £/ce”*U ¢ >0,
and the periodic peakons
ch( — (z —ct) + [z — t])
ue(@,1) = Ve ch(1/2) :
Afterwards, Liu, Liu and Qu [23] proved the single peakons are orbital stable. Wang, Tian also proved the existence and
orbital stability of the periodic peakons.

On the other hand, applying tri-Hamiltonian duality to the modified Korteweg-de Vries (mKdV) equation leads to the
modified Camassa-Holm (mCH) equation with cubic nonlinearity. More generally, applying tri-Hamiltonian duality to
the bi-Hamiltonian Gardner equation

c> 0.

Gt + Uz + k10 ug + kouu, = 0, (7)

the resulting dual system is the following generalized modified Camassa-Holm (gmCH) equation with both cubic and
quadratic nonlinearities [12]:

me + k1 [(u2 — ui)m]w + ko(2ugm +umy) =0, M =u— Ug,. 8
Recently, it was found that in [27] , for k1 # 0, the gmCH equation (8) admits a single peakon of the form

@e(t,z) = ae”* ceR,

/ 8
3 —kQ + k% + gklc 8
== k3 + —kic>0
a 4 kl ) 2 + 3 1 =2 U,

and also found that, for k; # 0, the gmCH equation (8) admits periodic peakons of the form

with

ue(t,x) = ach(% — (z —ct) + [x — ct]),

where

ks ch(1/2) % /K3 cb®(1/2) + Skrc(l +2¢h(1/2))
k1(1 4 2ch?(1/2))

L3
4

and
4
k2 ch?(1/2) + gklc(l +2¢h?(1/2)) > 0.

The existence of (periodic) peakons is of interest for the nonlinear integrable equations since they are relatively new
solitary waves. Inspired by [27], we focus on the following generalized Camassa-Holm equation with both cubic and
quadratic nonlinearities:

my + k1 (3uum + uzmm) + ka(2mug + mupu) =0, M= U — Ugy, 9)

where k1 and k5 are arbitrary constants. It is clear that equation (9) reduces to the CH equation for k1 = 0, k2 = 1 and the
Novikov equation for k; = 1, ko = 0, respectively. Equation (9) is actually a linear combination of CH equation (1) and
cubic nonlinear equation (6). Therefore, we may view equation (9) as a generalization of the CH equation, or simply call
equation (9) a generalized CH equation. Like the Camassa-Holm and Novikov equations, the new equation also admits
peaked soliton solutions. We will show the detailed proof in the paper.
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2 Preliminaries

In this paper, we are concerned with the Cauchy problem for the generalized CH equation on both line and the unit circle:

my + k1 (Buugm + u?my) + ko (2mu, +meu) =0, t>0,z2€ X =RorS,
m(t,x) = u(tvx) - Umm(t71')v (10)
w(0,2) = up(x), xe€X.

First, we will present the definition of strong (or classical) solutions as follows:

Definition 1 Let uw € C ([0,T); H*(X)) N CY([0,T); H*~ (X)) with s > 2 and some T > 0 satisfies (10), then u is
called a strong solution on [0,T). If u is a strong solution on [0,T) for every T > 0, then it is called a global strong
solution.

The following local well-posedness result and properties for strong solutions on the line and unit circle can be estab-
lished using the same approach as in [14].

Proposition 1 Let ug € H*(X) with s g Then there exists a time T' > 0 such that the initial value problem (10)
has a unique strong solution v € C ([0,T); H*(X )) NCY[0,T); H*~Y(X)) and the map uo — wu is continuous from a
neighborhood of ug in H*(X) intou € C ([0,T); H*(X)) N C1([0,T); H*~1(X)).

If m = u — uy, is substituted in terms of u into the generalized CH equation (10), then the resulting fully nonlinear
partial differential equation takes the following form:

1 3
wr + kyulu, + ikzl(l — 8§)_1ui + k(1 - 8:?)_1335(113 + Euui)
(11)
1

Taking the convolution with the Green’s function for the Helmholtz operator (1 — 92), equation (11) can be rewritten as

1 3
up + kyuug + ile( x) *ud 4+ k1 G(2) % 0p(ud + Suu?)

L2 (12)
+houuy + koG(z) * O, (u? + 2ui) =0.
Note that u can be formulated by the Green function G(x) as
u=(1-0*"tm=Gxm, (13)
h(1/2 —
where G(r) = %e—lml for the non-periodic case, G(z) = ch( 2/ & (1952—; [2]) for the periodic case, and * denotes the

convolution product on X, defined by

(f * 9)a /f

Next, we can derive the single solutions of equation (9).

Theorem 2 (Single peakons) For the wave speed c satisfying k3 + 4kic > 0, equation (9) with ki # 0 admits the single
peakons of the form:
u= Ae~lz=etl, (14)

—ko £ k% +4kic
2kq '

The above formulation (11) allows us to define the periodic weak solutions as follows.

where A =

Definition 2 Given initial data ug € W'3(S), the functionu € L;° ([0, T), W2 (8)) is called a periodic weak solution
to the initial value problem (10) if it satisfies the following identity:

3 3 Ui’:
I / Wit + 50,0+ Gl (w04 Juik ) 00~ kGl « (5 ) o
(15)
23x¢+k2 (z) * (u? + ;u ) mgb}dxdt—k/ o(2)¢(0, x)dx = 0,
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Jfor any smooth test function ¢(t,x) € C° ([0,T) x S). If u is a weak solution on [0, T) for every T > 0, then it is called
a global periodic weak solution.

The following theorem shows the existence of periodic peakons for the generalized CH equation (9).

Theorem 3 (Periodic peakons) For the wave speed c satisfying k3 ch®(1/2) + 4k;c (1+ sh2(1/2)) > 0, equation (9)
with k1 # 0 possesses the periodic peaked traveling-wave solutions of the form:

uc(x,t) = ach((), ¢ = % —(x —ct) + [z — ct], (16)

where

—ky ch(1/2) % \/k3 ch®(1/2) + dkrc (1 +sh*(1/2))
2k (1 +sh*(1/2))
as the global periodic weak solutions to (10) in the sense of Definition 2.2.

a =

a7

3 Proof of Existence

In this section, we offer the detailed proof of existence of single-peakon solutions and periodic peakons for equation (9).

3.1 Proof of Theorem 2
Proof. Firstly, let us suppose the single-peakon solution of equation (9) in the form of
u= Ae~177¢tl, (18)

where A is to be determined. The derivatives of expression (18) do not exist at z = ct, thus (18) can not satisfy equation
(9) in the classical sense. However, in the weak sense, we can write out the expressions of u, and u; with help of
distribution:

uy = —Asgn(x — ct)e_lx_Ctl, uy = cAsgn(x — ct)e_‘x_cﬂ. (19)
Next, we need consider two cases (i) z > ct and (ii) x < ct.
For x > ct, we calculate from (18) and (19) that
Wy + k1ulug + kouug = Ace™ =) — gy A3e3@—et) _ g, A2 2(z—ct) (20)

Note that for the non-periodic case, the Green function G(z) = %e“”‘, it is thus deduced that

1
ile(x) xul + k1 G(x) % 0, (u® + guui)

1
—zklAg/ sgn(y — ct)e~177vI=8ly=ctl gy,
R

——klAB/ sgn(y — ct)e”vI=Slv=etlgy @

ct
—4k1A3< / / / >e |z—y|—3ly— Ct‘dy
ct

:_klAS —(z— Ct)—|—k Ad —3(z—ct)

and 1
koG(x) * 0, (u? + 2ui,)

3
_§]€2A2 /R Sgn(y — ct)e—lx—y\—Qly—cﬂdy

3 ct xT +oo
S aa? </ +/ +/ >ezy|2yctdy
—0o0 ct x

— 7k2A2ef(xfct) + k2A2672(w7ct).

(22)
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The case x < ct is similar to x > ct, here we do not compute in detail.
Plugging (20), (21) and (22) into (12), we deduce that

ug + kyuug + %le(;v) *ud 4+ k1G(x) % 0, (u® + guui)
+houry + koG(x) % Oy (u? + %ui)
= (Ac — k1 A3 — kyA?)e=(x=ct)
=0.
Therefore, we are able to conclude from (23) that A should satisfy

k1A2+k2A—C:0.

In general, we may obtain
. —ko £ k?% +4kqc
B 2k;

where k3 + 4k;c > 0 with k; # 0. The proof of Theorem 2 is completed.

A

Remark 4 In particular, k1 = 0, ko # 0, we obtain A = k;£ In general, for k1 # 0, we can derive
2

. —ko & /{ig + 4kqc

A 2k

41

(23)

(24)

(25)

(26)

3
If k2 + 4kyc > 0, then A is a real number. In particular, when ky = 1, ko = 1 and ¢ = T we can obtain the figure of

single-peakons in Fig.1. If k3 + 4kic < 0, then A is a complex number, which means the peakon solution with complex

coefficient is obtained.

e B
-4 -2

3
Figure 1: Single-peakons with k1 = 1,ko = 1,¢ = Z’(t =1).

3.2 Proof of Theorem 3

Proof. Firstly, we identify S = [0, 1) and regard u..(¢, x) as spatial periodic function on S with period one. On one hand,
it is noted that u, is continuous on S with peak at x = 0. On the other hand, u.. is smooth on (0, 1) and for all ¢ € R™,

Ozuc(t,z) = —ash(¢) € L(S).
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Hence, if one denotes u. o(z) = u.(0,z), € S, then it holds that
1' c t, 2] — c . ,00 == O
e st [ue(t;-) = e o()lwree(s)

As in (27), it is found that
Opuc(x,t) = acsh(C) € L*°(S), t > 0.

A direct computation gives the following identity:

u2d,u. = —a® ch?(¢) sh(¢) = —a®sh(¢) — a®sh?(¢).

Using (27)-(29) and integration by parts, it is thus deduced that, for every test function ¢ (¢, z) € C° (|0,

/ / U + ﬁuiaw(b + @ui&cfb dxdt + / Ue0()p(x,0)dx
o Js 3 2 s
= —/ / B (Optte + k1uZ0pue + kouOpu,)dodt
0 S

= /OOO /8 10) ((—ac + k1a3) sh(¢) + kia® sh3(<) + kpa? sh(¢) ch(C)) dxdt.

It follows from (27), (29) and the proof of Theorem 4.1 in [13] that

[/ [klc(sc) " (u3 " guc@u»z) 0.6~ "L G(x) (aiuc)%] dudt
0 S
=—k /OO/ oG (x) * <3u38xuc + ;(muc)?’) dzxdt

ffkl/ /d)G uc (Oy uc) )dxdt.
We calculate from (27) and (30) that
3uZ0,u. + %(&Euc)g’ = —3a®ch?(¢) sh(¢) — %a?’ sh3(¢) = —3a®sh(¢) — ga3 sh3(¢)

and
UC(BIUC)z =ad’ ch(() sh? (©),
which together with (32), we have

/ / |:le * (u + uc(B Ue) >8m¢— %G(m) ¥ (D)6
= k1a3/ / oG (x) * <3 sh(¢) + 7sh3(<)) dudt

”kla/ /¢G ch(¢) sh*(¢)) ddt.

On the other hand, noticing from the explicit form of the Green function G(z) for the periodic case that

ch(1/2 — z + [z]) sh(1/2 —z + [z])

G@) = =) 2sh(1/2)

and Gz(z) = —

x € R,

we obtain

Gla) « (350(0) + L %(0)) a2

1
W/Sdl(lﬂ— (x—y)+[z—y])- (3sh(1/2— (y —ct) + [y — ct])

FTSP(1/2— (y ) + [y — cf]) ) dy
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and

Go(x) * (ch(¢) sh*(Q)) (. 1)

1
- _2sh(1/2)/5
sh?(1/2 — (y —ct) + [y — ct]))dy.

To proceed, we consider two cases: (i) ¢ > ct and (ii)) x < ct. When = > ct, we split the right-hand side of (34) into the
following three parts:

sh(1/2 — (2 —y) + [0 —y)) - (h(1/2 = (y = et) + [y — ) (35)

G(z) * (3 sh(¢) + ;bh:"(g)) (z,t)

:2811(11/2)(/OCt+/Cj+L1>ch(1/2—(x—y)+[$—y]) (36)

(3sh(1/2 = (y = ) + [y — et]) + gsh3(1/2 ~(y—et) + [y — ct]) ) dy
=L+ 1+ Is.

Using the identity sh(3z) = 4sh®(z) 4 3sh(z), a direct calculation gives rise to

1 ct

~ <3sh(1/2+ct —y)+ gsh?’(—l/2 +ct — y)) dy
= 25}1(11/2)(/0 gCh(1/2_$+y)5h(—1/2+ct—y)dy

ct
+/ g ch(1/2 — 2 + y) sh(—3/2 + 3ct — 3y)dy)
0

(—ch(1+x—ct)+ch(1—|—x—3ct)

(37)
T oash(1/2)

1 1
~5 ch(2 —z+ct) + 3 ch(2 -z — 30t))

1
S sh(x — ct) — 3ch(1 — h(l — x —
61s (1/2)< 6et sh(z — ct) — 3 ch( x + ct) + 3 ch( x — ct)

7 7
—7ch(l+ 2 —ct)+ 7ch(l+x — 3ct) — §ch(2 —xz+ct)+ §ch(2 —x— 3ct)).

In a similar manner,

1 T
L= 2sh(1/2) /Ct

: (3sh(1/2 +ct —y) + gshg(l/Z +ct — y)> dy

ch(1/2 —z +y)

1 ct
= S50 h(1/2 —x +
s ), 2w %)
' (2 sh(l/2+ct —y) + gsh(3/2 +3ct — 3y)> dy
= 64T(1/2)(6(917 —ct)sh(l —z +ct) — 7ch(2 — 3z + 3ct) + Tch(2 — = + ct)

7 7
5 ch(l =32 +3ct) + S ch(l+a — ct))
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and

1

I ch(1/2 —z +y)

1
- 2sh(1/2)/x
-(35h(1/2+ct—y)+;Sh3(1/2+ct—y)> dy
1
= 25h(11/2)/ ch(1/2 —z +y)

. (2 sh(l/2+ct —y)+ gsh(S/Q + 3ct — 3y)> dy

1
" 64sh(1/2)\
—7ch(1+ 2 —3ct) + 7Tch(1l — 3z + 3ct)

(39)

6(1 —x)sh(z —ct) —3ch(1 —z —ct) + 3ch(l — x + ct)

7 7
—5ch(2 =z = 3ct) + 5 ch(2 32 + 3ct)).
Plugging (37), (38) and (39) into (36), we deduce that for z > ct,

Gla) * (3 sh(C) + ;sh3(§)> (2,1)

- m(w —ct)sh(l =z +ct) — 6(1 — z + ct) sh(z — ct) (40)

7 7 7 7
_§Ch(1 +z—ct)+ 5ch(2 —z+ct)— 5ch(2 — 3z + 3ct) + Qch(l —3x+3ct)).
On the other hand, when x > ct, the right-hand side of (35) can be split into

Go() * (ch(¢)sh?(C)) (,t)

cch(1/2 — (y —ct) + [y — ct]) - sh*(1/2 — (y — ct) + [y — ct]))dy

=Ji+ o+ Js.

For .J;, due to the identity 2sh?(z) = ch(2z) — 1, a direct calculation gives rise to

Ji= _25}1(11/2)/0 sh(1/2 =2 +y)-ch(1/2 — ct +y) - sh*(1/2 — ct + y)dy
1 ct
48}1(1/2)/0 sh(1/2—x+y)-ch(1/2 —ct+y) - (ch(l — 2ct +2y) — 1) dy )
1

1 1
- *m(Qctsh(I*ctH 5 ch(2 =+ ct) = 5 ch(2 —z — 3ct)

fch(lf:c+ct)+ch(1fa:fct)fch(l+xfct)+ch(1+x73ct)>.
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Similarly, we also obtain

Jy = —28}1(11/2)/:5h(1/2 —x+7y) ch(1/2+ct —y)-sh*(1/2 + ¢t —y)dy
= _41511(11/2)/:511(1/2 —xz+vy) ch(l/2+ct —y)- (ch(l+42ct —2y)—1)dy
= —m(—ﬂx—ct)shﬂ—x—kcﬂ - %Ch(l—kx—ct)+%Ch(1—3x—|—3ct)

—ch(2 — 3z + 3ct) + ch(2 —x + ct))

and

J3 = —ml sh(=1/2 —x +y) - ch(1/2 + ct —y) - sh*(1/2 + ct — y)dy
1

1 1
“32sh(1/2) (2(1 —z)sh(z —ct) + 3 ch(2 —z — 3ct) — 3 ch(2 — 3z + 3ct)
—ch(1+z —3ct) +ch(l — 3z + 3ct) —ch(l —z — ct) + ch(l —z + ct)).
Plugging (42), (43) and (44) into (41), we deduce that for z > ct,
G () * (ch(C) sh*(Q)) (1)
1
= T32am(2) (2(1 —x + ct)sh(z — ct) — 2(x — ct) sh(1l — x + ct)
3 3
fich(lerfct)Jr 5ch(27x+ct)
,g ch(2 — 3z + 3ct) + ; ch(1 — 3z + 3ct)).

It follows from (32), (35), (40) and (45) that
e 3,9 2 ky 3
kla(x) * | ug + §Uc(8zuc) O0rp — 7G(‘T) * (896“0) ¢| dxdt
0
kla
W / / <2 sh(3/2) - sh(1/2 —z + ct) — 2sh(1/2) - sh(3/2 — 3z + 30t)> dzdt
= kia® / / ¢ (sh®(1/2) - sh(1/2 — z + ct) — sh®(1/2 — x + ct)) dadt.
0
In a similar manner, for the case of x < ct, we have

[e%s} ct
/ / |:le(1') * (ui) =+ 3uc(amuc)2> aacd) - ﬁC"Y(‘:U) * (azuc)3¢:| dxdt

— hya? / b / " $G() + <3 sh(C) + ;sh3(C)) - quGx(x) ; <ch(<) .sh2(<)>dxdt

k;la
8sh1/2 / / (—ch2+m—ct)—ch(1—x+ct)

—ch(1+ 3z — 3ct) — ch(2+ 3z — 30t)) dxdt

= kya® /OO /Ct¢(— sh®(1/2) - sh(1/2 4+ z — ct) +sh®(1/2 + = — ct)) dadt.
0 0
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Hence, associated with (46), we obtain

/Ooo/s [le(SC) * (ui’ + 2uc(8wuc)2> Opp — %G(x) % (5Iuc)3¢ dedt

48

=k’ / ) / ¢ (sh*(1/2) - sh(¢) — sh*(¢)) davat. “
0o Js

Now we compute directly that

/OO/ koG () * (ui + ;((%uc)Q) Oy pdadt
0 S
= / b / kopG(z) % O, (u2 + 1(azuc)2) dxdt (49)
0 S 2

3k e
= ——2a2/ / ¢G(z) * sh(2¢)dxdt.
2 o Js
When x > ct, a direct calculation gives rise to

G(z) *sh(2¢)(t, z)

/Q)/SCh(l/Q(xy)ﬂxy])'Sh(l2(y6t)+2[yct])dy

ct
ﬁ[/ ch(1/2 — z +y) - sh(—1 — 2y + 2¢t)dy
R (50)
+/ ch(1/2 —z +y) - sh(l — 2y + 2ct)dy
ct

1
—I—/ ch(1/2+ z —y) - sh(l — 2y + 2ct)dy

_ % [eh(1/2) sh(1/2 — (& — cf)) — sh(1/2 — (z — ct)) ch (1/2 — (x — 1)) .

In a similar manner, for z < ct,

G(z) *sh(2¢) (¢, z)

2 (1))
=3 [—ch(1/2)sh(1/2+ (z — ct)) + sh(1/2 + (z — ct)) ch (1/2 + (z — ct))].

Plugging (50) and (51) into (49), it is deduced by a straightforward computation that

/00/ koG (z) (uz + 1(3;5%)2) O pdadt
o Js 2

o0 (52)
= —kya® / / ¢ (sh(¢) ch(¢) — ch(1/2) sh(¢)) dzdt.
0 S

In view of (31), (48) and (52), we have

/ /[ucat¢+ ﬁug’ﬁmqﬁ—i— @uiarqs
o Js 3 2

o G(x) * <u3 + guc(ﬁmuc)2) Opp — k1 G() * <(8“;‘C)3) o

(53)
+k2G(az)*(ung%(amuc)z)@qu]dxdtJr / Ue,o(2)d(0, x)dx
S

_/Oofsqﬁa[kl(l+sh2(1/2))a2+k2ch(1/2)a—c} sh(¢)dxdt.
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If a takes value as (17), then
E1(1 4 sh?(1/2))a® + kg ch(1/2)a — ¢ = 0,

which implies that
o k k
/ / [uc0: + S0 + S ul0ed
0o Js 3 2

+k1G(x) * <ui + 2uc(8xuc)2> Oy — %G(a:) * (0pue)3o (54)

+k2G(I) * (UE + %(amuc)2)am¢]dmdt + / uc,o(x)qﬁ((),x)dx =0,
S

for any test function ¢(z,t) € C°(]0, 00) x §). Thus the theorem is proved.

C

Remark 5 In particular, when ki = 0, ky # 0, we obtain a = m

. In general, if ki # 0, then we can derive

—kych(1/2) + /K3 ch®(1/2) + ki (1 + sh(1/2))e
= 2 (1 -+ s7(1/2)) | )

If k3 ch®(1/2) + 4k1 (1 +sh?(1/2))c > 0, then a is a real number. If k3 ch®(1/2) + 4k (1 +sh®(1/2))c < 0, then a
is a complex number, which means that the periodic peakons with complex coefficient are found. The graph 2(a) and 2(b)
show the shape of periodic peakons.

@ki=ky=1c=1 M ki=ks=1c=1t=1

Figure 2: The graph of periodic peakons for Novikov-CH equation.
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