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Abstract: In this paper, we study the following generalized Camassa-Holm equation with both cubic and
quadratic nonlinearities:

mt + k1(3uuxm+ u2mx) + k2(2mux +mxu) = 0, m = u− uxx,

which is presented as a linear combination of the Novikov equation and the Camassa-Holm equation with
constants k1 and k2. The model is a cubic generalization of the Camassa-Holm equation. In this paper it is
shown that the equation admits single-peaked soliton and periodic peakons.
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1 Introduction
The well-known Camassa-Holm(CH) equation

mt + umx + 2uxm = 0, m = u− uxx, (1)

which was proposed by Camassa and Holm as a nonlinear model for the unidirectional propagation of the shallow water
waves over a flat bottom with u(x, t) representing the water’s free surface [6, 17, 18]. It has attracted much attention in the
past decades. In addition, the CH equation (1) has several nice geometrical structures, for example, its description about
a geodesic flow on the diffeomorphism group on the circle [19] and its derivation from a non-stretching invariant planar
curve flow in the centro-equiaffine geometry [16]. Moreover, well-posedness theory and wave breaking phenomenon of
the CH equation were studied extensively, and many interesting results have been deduced, see [2, 7–9, 26]. The stability
and interaction of peakons were discussed in several references [10, 11, 25]. Among these properties, a remarkable one is
that it admits the single peakons and periodic peakons in the following forms

φc(x, t) = ce−|x−ct|, c ∈ R, (2)

and
uc(x, t) =

c

sh(1/2)
ch(

1

2
− (x− ct) + [x− ct]), c ∈ R, (3)

where the notation [x] denotes the largest integer part of the real number x ∈ R.
In addition to the CH equation being an integrable model with peakons, other integrable peakon models, which include

the Degasperis-Procesi equation and the cubic nonlinear peakon equations [3, 20], have been found. Indeed, two integrable
CH-type equations with cubic nonlinearity have been discovered recently. The first one is mCH equation:

mt +
[
(u2 − u2

x)m
]
x
= 0, m = u− uxx, (4)
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and the second one is the so-called Novikov equation:

ut − utxx + 4u2ux = 3uuxuxx + u2uxxx, t > 0, x ∈ R. (5)

The perturbative symmetry approach [5] yielded necessary conditions for PDEs to admit infinitely many symmetries.
Using this approach, Novikov [20] was able to isolate Eq.(5) in a symmetry classification and also found its first few
symmetries. He subsequently found a scalar Lax pair for it, and also proved that the equation is integrable. By defining a
new dependent variable m, Eq.(5) can be written as

mt + u2mx + 3uuxm = 0, m = u− uxx. (6)

Analogous to the Camassa-Holm equation, the Novikov equation has a bi-Hamiltonian structure and an infinite se-
quence of conserved quantities. In addition, the single-peaked solutions of the Novikov equation was obtained by Hone
and Wang in [3], which takes the form

u(t, x) = ±
√
ce−|x−ct|, c > 0,

and the periodic peakons

uc(x, t) =
√
c
ch( 12 − (x− ct) + [x− ct])

ch(1/2)
, c > 0.

Afterwards, Liu, Liu and Qu [23] proved the single peakons are orbital stable. Wang, Tian also proved the existence and
orbital stability of the periodic peakons.

On the other hand, applying tri-Hamiltonian duality to the modified Korteweg-de Vries (mKdV) equation leads to the
modified Camassa-Holm (mCH) equation with cubic nonlinearity. More generally, applying tri-Hamiltonian duality to
the bi-Hamiltonian Gardner equation

Gut + uxxx + k1u
2ux + k2uux = 0, (7)

the resulting dual system is the following generalized modified Camassa-Holm (gmCH) equation with both cubic and
quadratic nonlinearities [12]:

mt + k1
[
(u2 − u2

x)m
]
x
+ k2(2uxm+ umx) = 0, m = u− uxx. (8)

Recently, it was found that in [27] , for k1 ̸= 0, the gmCH equation (8) admits a single peakon of the form

φc(t, x) = ae−|x−ct|, c ∈ R,

with

a =
3

4

−k2 ±
√
k22 +

8
3k1c

k1
, k22 +

8

3
k1c ≥ 0,

and also found that, for k1 ̸= 0, the gmCH equation (8) admits periodic peakons of the form

uc(t, x) = a ch(
1

2
− (x− ct) + [x− ct]),

where

a =
3

4

−k2 ch(1/2)±
√
k22 ch

2(1/2) + 4
3k1c(1 + 2 ch2(1/2))

k1(1 + 2 ch2(1/2))

and
k22 ch

2(1/2) +
4

3
k1c(1 + 2 ch2(1/2)) > 0.

The existence of (periodic) peakons is of interest for the nonlinear integrable equations since they are relatively new
solitary waves. Inspired by [27], we focus on the following generalized Camassa-Holm equation with both cubic and
quadratic nonlinearities:

mt + k1(3uuxm+ u2mx) + k2(2mux +mxu) = 0, m = u− uxx, (9)

where k1 and k2 are arbitrary constants. It is clear that equation (9) reduces to the CH equation for k1 = 0, k2 = 1 and the
Novikov equation for k1 = 1, k2 = 0, respectively. Equation (9) is actually a linear combination of CH equation (1) and
cubic nonlinear equation (6). Therefore, we may view equation (9) as a generalization of the CH equation, or simply call
equation (9) a generalized CH equation. Like the Camassa-Holm and Novikov equations, the new equation also admits
peaked soliton solutions. We will show the detailed proof in the paper.
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2 Preliminaries
In this paper, we are concerned with the Cauchy problem for the generalized CH equation on both line and the unit circle: mt + k1(3uuxm+ u2mx) + k2(2mux +mxu) = 0, t > 0, x ∈ X = R or S,

m(t, x) = u(t, x)− uxx(t, x),
u(0, x) = u0(x), x ∈ X.

(10)

First, we will present the definition of strong (or classical) solutions as follows:

Definition 1 Let u ∈ C ([0, T );Hs(X)) ∩ C1([0, T );Hs−1(X)) with s > 5
2 and some T > 0 satisfies (10), then u is

called a strong solution on [0, T ). If u is a strong solution on [0, T ) for every T > 0, then it is called a global strong
solution.

The following local well-posedness result and properties for strong solutions on the line and unit circle can be estab-
lished using the same approach as in [14].

Proposition 1 Let u0 ∈ Hs(X) with s > 5
2 . Then there exists a time T > 0 such that the initial value problem (10)

has a unique strong solution u ∈ C ([0, T );Hs(X)) ∩ C1([0, T );Hs−1(X)) and the map u0 → u is continuous from a
neighborhood of u0 in Hs(X) into u ∈ C ([0, T );Hs(X)) ∩ C1([0, T );Hs−1(X)).

If m = u − uxx is substituted in terms of u into the generalized CH equation (10), then the resulting fully nonlinear
partial differential equation takes the following form:

ut + k1u
2ux +

1

2
k1(1− ∂2

x)
−1u3

x + k1(1− ∂2
x)

−1∂x(u
3 +

3

2
uu2

x)

+k2uux + k2∂x(1− ∂2
x)

−1(u2 +
1

2
u2
x) = 0.

(11)

Taking the convolution with the Green’s function for the Helmholtz operator (1− ∂2
x), equation (11) can be rewritten as

ut + k1u
2ux +

1

2
k1G(x) ∗ u3

x + k1G(x) ∗ ∂x(u3 +
3

2
uu2

x)

+k2uux + k2G(x) ∗ ∂x(u2 +
1

2
u2
x) = 0.

(12)

Note that u can be formulated by the Green function G(x) as

u = (1− ∂2
x)

−1m = G ∗m, (13)

where G(x) = 1
2e

−|x| for the non-periodic case, G(x) =
ch(1/2− x+ [x])

2 sh(1/2)
for the periodic case, and ∗ denotes the

convolution product on X , defined by

(f ∗ g)(x) =
∫
X

f(y)g(x− y)dy.

Next, we can derive the single solutions of equation (9).

Theorem 2 (Single peakons) For the wave speed c satisfying k22 + 4k1c ≥ 0, equation (9) with k1 ̸= 0 admits the single
peakons of the form:

u = Ae−|x−ct|, (14)

where A =
−k2 ±

√
k22 + 4k1c

2k1
.

The above formulation (11) allows us to define the periodic weak solutions as follows.

Definition 2 Given initial data u0 ∈ W 1,3(S), the function u ∈ L∞
loc([0, T ),W

1,3
loc (S)) is called a periodic weak solution

to the initial value problem (10) if it satisfies the following identity:∫ T

0

∫
S

[
u∂tϕ+

k1
3
u3∂xϕ+ k1G(x) ∗

(
u3 +

3

2
uu2

x

)
∂xϕ− k1G(x) ∗

(
u3
x

2

)
ϕ

+
k2
2
u2∂xϕ+ k2G(x) ∗ (u2 +

1

2
u2
x)∂xϕ

]
dxdt+

∫
S
u0(x)ϕ(0, x)dx = 0,

(15)
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for any smooth test function ϕ(t, x) ∈ C∞
c ([0, T )× S). If u is a weak solution on [0, T ) for every T > 0, then it is called

a global periodic weak solution.

The following theorem shows the existence of periodic peakons for the generalized CH equation (9).

Theorem 3 (Periodic peakons) For the wave speed c satisfying k22 ch
2(1/2) + 4k1c

(
1 + sh2(1/2)

)
≥ 0, equation (9)

with k1 ̸= 0 possesses the periodic peaked traveling-wave solutions of the form:

uc(x, t) = a ch(ζ), ζ =
1

2
− (x− ct) + [x− ct], (16)

where

a =
−k2 ch(1/2)±

√
k22 ch

2(1/2) + 4k1c
(
1 + sh2(1/2)

)
2k1

(
1 + sh2(1/2)

) (17)

as the global periodic weak solutions to (10) in the sense of Definition 2.2.

3 Proof of Existence
In this section, we offer the detailed proof of existence of single-peakon solutions and periodic peakons for equation (9).

3.1 Proof of Theorem 2
Proof . Firstly, let us suppose the single-peakon solution of equation (9) in the form of

u = Ae−|x−ct|, (18)

where A is to be determined. The derivatives of expression (18) do not exist at x = ct, thus (18) can not satisfy equation
(9) in the classical sense. However, in the weak sense, we can write out the expressions of ux and ut with help of
distribution:

ux = −Asgn(x− ct)e−|x−ct|, ut = cAsgn(x− ct)e−|x−ct|. (19)

Next, we need consider two cases (i) x > ct and (ii) x < ct.
For x > ct, we calculate from (18) and (19) that

ut + k1u
2ux + k2uux = Ace−(x−ct) − k1A

3e−3(x−ct) − k2A
2e−2(x−ct). (20)

Note that for the non-periodic case, the Green function G(x) = 1
2e

−|x|, it is thus deduced that

1

2
k1G(x) ∗ u3

x + k1G(x) ∗ ∂x(u3 +
3

2
uu2

x)

= −1

4
k1A

3

∫
R

sgn(y − ct)e−|x−y|−3|y−ct|dy

−15

4
k1A

3

∫
R

sgn(y − ct)e−|x−y|−3|y−ct|dy

= −4k1A
3

(
−
∫ ct

−∞
+

∫ x

ct

+

∫ +∞

x

)
e−|x−y|−3|y−ct|dy

= −k1A
3e−(x−ct) + k1A

3e−3(x−ct),

(21)

and
k2G(x) ∗ ∂x(u2 +

1

2
u2
x)

= −3

2
k2A

2

∫
R

sgn(y − ct)e−|x−y|−2|y−ct|dy

= −3

2
k2A

2

(
−
∫ ct

−∞
+

∫ x

ct

+

∫ +∞

x

)
e−|x−y|−2|y−ct|dy

= −k2A
2e−(x−ct) + k2A

2e−2(x−ct).

(22)
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The case x < ct is similar to x > ct, here we do not compute in detail.
Plugging (20), (21) and (22) into (12), we deduce that

ut + k1u
2ux +

1

2
k1G(x) ∗ u3

x + k1G(x) ∗ ∂x(u3 +
3

2
uu2

x)

+k2uux + k2G(x) ∗ ∂x(u2 +
1

2
u2
x)

= (Ac− k1A
3 − k2A

2)e−(x−ct)

= 0.

(23)

Therefore, we are able to conclude from (23) that A should satisfy

k1A
2 + k2A− c = 0. (24)

In general, we may obtain

A =
−k2 ±

√
k22 + 4k1c

2k1
(25)

where k22 + 4k1c ≥ 0 with k1 ̸= 0. The proof of Theorem 2 is completed.

Remark 4 In particular, k1 = 0, k2 ̸= 0, we obtain A =
c

k2
. In general, for k1 ̸= 0, we can derive

A =
−k2 ±

√
k22 + 4k1c

2k1
. (26)

If k22 + 4k1c ≥ 0, then A is a real number. In particular, when k1 = 1, k2 = 1 and c =
3

4
, we can obtain the figure of

single-peakons in Fig.1. If k22 + 4k1c ≤ 0, then A is a complex number, which means the peakon solution with complex
coefficient is obtained.

-4 -2 2 4 6

0.1

0.2

0.3

0.4

0.5

Figure 1: Single-peakons with k1 = 1,k2 = 1,c =
3

4
,(t = 1).

3.2 Proof of Theorem 3
Proof . Firstly, we identify S = [0, 1) and regard uc(t, x) as spatial periodic function on S with period one. On one hand,
it is noted that uc is continuous on S with peak at x = 0. On the other hand, uc is smooth on (0, 1) and for all t ∈ R+,

∂xuc(t, x) = −a sh(ζ) ∈ L∞(S). (27)
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Hence, if one denotes uc,0(x) = uc(0, x), x ∈ S, then it holds that

lim
t→0+

∥uc(t, ·)− uc,0(·)∥W 1,∞(S) = 0. (28)

As in (27), it is found that
∂tuc(x, t) = ac sh(ζ) ∈ L∞(S), t ≥ 0. (29)

A direct computation gives the following identity:

u2
c∂xuc = −a3 ch2(ζ) sh(ζ) = −a3 sh(ζ)− a3 sh3(ζ). (30)

Using (27)-(29) and integration by parts, it is thus deduced that, for every test function ϕ(t, x) ∈ C∞
c ([0,∞)× S),∫ ∞

0

∫
S

(
uc∂tϕ+

k1
3
u3
c∂xϕ+

k2
2
u2
c∂xϕ

)
dxdt+

∫
S
uc,0(x)ϕ(x, 0)dx

= −
∫ ∞

0

∫
S
ϕ(∂tuc + k1u

2
c∂xuc + k2uc∂xuc)dxdt

=

∫ ∞

0

∫
S
ϕ
(
(−ac+ k1a

3) sh(ζ) + k1a
3 sh3(ζ) + k2a

2 sh(ζ) ch(ζ)
)
dxdt.

(31)

It follows from (27), (29) and the proof of Theorem 4.1 in [13] that∫ ∞

0

∫
S

[
k1G(x) ∗

(
u3
c +

3

2
uc(∂xuc)

2

)
∂xϕ− k1

2
G(x) ∗ (∂xuc)

3ϕ

]
dxdt

= −k1

∫ ∞

0

∫
S
ϕG(x) ∗

(
3u2

c∂xuc +
1

2
(∂xuc)

3

)
dxdt

−3

2
k1

∫ ∞

0

∫
S
ϕGx(x) ∗

(
uc(∂xuc)

2
)
dxdt.

(32)

We calculate from (27) and (30) that

3u2
c∂xuc +

1

2
(∂xuc)

3 = −3a3 ch2(ζ) sh(ζ)− 1

2
a3 sh3(ζ) = −3a3 sh(ζ)− 7

2
a3 sh3(ζ)

and
uc(∂xuc)

2 = a3 ch(ζ) sh2(ζ),

which together with (32), we have∫ ∞

0

∫
S

[
k1G(x) ∗

(
u3
c +

3

2
uc(∂xuc)

2

)
∂xϕ− k1

2
G(x) ∗ (∂xuc)

3ϕ

]
= k1a

3

∫ ∞

0

∫
S
ϕG(x) ∗

(
3 sh(ζ) +

7

2
sh3(ζ)

)
dxdt

−3

2
k1a

3

∫ ∞

0

∫
S
ϕGx(x) ∗

(
ch(ζ) sh2(ζ)

)
dxdt.

(33)

On the other hand, noticing from the explicit form of the Green function G(x) for the periodic case that

G(x) =
ch(1/2− x+ [x])

2 sh(1/2)
and Gx(x) = − sh(1/2− x+ [x])

2 sh(1/2)
, x ∈ R,

we obtain

G(x) ∗
(
3 sh(ζ) +

7

2
sh3(ζ)

)
(x, t)

=
1

2 sh(1/2)

∫
S
ch(1/2− (x− y) + [x− y]) ·

(
3 sh(1/2− (y − ct) + [y − ct])

+
7

2
sh3(1/2− (y − ct) + [y − ct])

)
dy

(34)
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and
Gx(x) ∗ (ch(ζ) sh2(ζ))(x, t)

= − 1

2 sh(1/2)

∫
S
sh(1/2− (x− y) + [x− y]) ·

(
ch(1/2− (y − ct) + [y − ct])

· sh2(1/2− (y − ct) + [y − ct])
)
dy.

(35)

To proceed, we consider two cases: (i) x > ct and (ii) x < ct. When x > ct, we split the right-hand side of (34) into the
following three parts:

G(x) ∗
(
3 sh(ζ) +

7

2
sh3(ζ)

)
(x, t)

=
1

2 sh(1/2)

(∫ ct

0

+

∫ x

ct

+

∫ 1

x

)
ch(1/2− (x− y) + [x− y])

·
(
3 sh(1/2− (y − ct) + [y − ct]) +

7

2
sh3(1/2− (y − ct) + [y − ct])

)
dy

= I1 + I2 + I3.

(36)

Using the identity sh(3x) = 4 sh3(x) + 3 sh(x), a direct calculation gives rise to

I1 =
1

2 sh(1/2)

∫ ct

0

ch(1/2− x+ y)

·
(
3 sh(−1/2 + ct− y) +

7

2
sh3(−1/2 + ct− y)

)
dy

=
1

2 sh(1/2)

(∫ ct

0

3

8
ch(1/2− x+ y) sh(−1/2 + ct− y)dy

+

∫ ct

0

7

8
ch(1/2− x+ y) sh(−3/2 + 3ct− 3y)dy

)
+

7

64 sh(1/2)

(
− ch(1 + x− ct) + ch(1 + x− 3ct)

−1

2
ch(2− x+ ct) +

1

2
ch(2− x− 3ct)

)
=

1

64 sh(1/2)

(
− 6ct sh(x− ct)− 3 ch(1− x+ ct) + 3 ch(1− x− ct)

−7 ch(1 + x− ct) + 7 ch(1 + x− 3ct)− 7

2
ch(2− x+ ct) +

7

2
ch(2− x− 3ct)

)
.

(37)

In a similar manner,

I2 =
1

2 sh(1/2)

∫ x

ct

ch(1/2− x+ y)

·
(
3 sh(1/2 + ct− y) +

7

2
sh3(1/2 + ct− y)

)
dy

=
1

2 sh(1/2)

∫ ct

0

ch(1/2− x+ y)

·
(
3

8
sh(1/2 + ct− y) +

7

8
sh(3/2 + 3ct− 3y)

)
dy

=
1

64 sh(1/2)

(
6(x− ct) sh(1− x+ ct)− 7 ch(2− 3x+ 3ct) + 7 ch(2− x+ ct)

−7

2
ch(1− 3x+ 3ct) +

7

2
ch(1 + x− ct)

)

(38)
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and

I3 =
1

2 sh(1/2)

∫ 1

x

ch(1/2− x+ y)

·
(
3 sh(1/2 + ct− y) +

7

2
sh3(1/2 + ct− y)

)
dy

=
1

2 sh(1/2)

∫ 1

x

ch(1/2− x+ y)

·
(
3

8
sh(1/2 + ct− y) +

7

8
sh(3/2 + 3ct− 3y)

)
dy

=
1

64 sh(1/2)

(
− 6(1− x) sh(x− ct)− 3 ch(1− x− ct) + 3 ch(1− x+ ct)

−7 ch(1 + x− 3ct) + 7 ch(1− 3x+ 3ct)

−7

2
ch(2− x− 3ct) +

7

2
ch(2− 3x+ 3ct)

)
.

(39)

Plugging (37), (38) and (39) into (36), we deduce that for x > ct,

G(x) ∗
(
3 sh(ζ) +

7

2
sh3(ζ)

)
(x, t)

=
1

64 sh(1/2)

(
6(x− ct) sh(1− x+ ct)− 6(1− x+ ct) sh(x− ct)

−7

2
ch(1 + x− ct) +

7

2
ch(2− x+ ct)− 7

2
ch(2− 3x+ 3ct) +

7

2
ch(1− 3x+ 3ct)

)
.

(40)

On the other hand, when x > ct, the right-hand side of (35) can be split into

Gx(x) ∗
(
ch(ζ) sh2(ζ)

)
(x, t)

= − 1

2 sh(1/2)

(∫ ct

0

+

∫ x

ct

+

∫ 1

x

)(
sh(1/2− (x− y) + [x− y])

· ch(1/2− (y − ct) + [y − ct]) · sh2(1/2− (y − ct) + [y − ct])
)
dy

= J1 + J2 + J3.

(41)

For J1, due to the identity 2 sh2(x) = ch(2x)− 1, a direct calculation gives rise to

J1 = − 1

2 sh(1/2)

∫ ct

0

sh(1/2− x+ y) · ch(1/2− ct+ y) · sh2(1/2− ct+ y)dy

= − 1

4 sh(1/2)

∫ ct

0

sh(1/2− x+ y) · ch(1/2− ct+ y) · (ch(1− 2ct+ 2y)− 1) dy

= − 1

32 sh(1/2)

(
2ct sh(x− ct) +

1

2
ch(2− x+ ct)− 1

2
ch(2− x− 3ct)

− ch(1− x+ ct) + ch(1− x− ct)− ch(1 + x− ct) + ch(1 + x− 3ct)
)
.

(42)
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Similarly, we also obtain

J2 = − 1

2 sh(1/2)

∫ x

ct

sh(1/2− x+ y) · ch(1/2 + ct− y) · sh2(1/2 + ct− y)dy

= − 1

4 sh(1/2)

∫ x

ct

sh(1/2− x+ y) · ch(1/2 + ct− y) · (ch(1 + 2ct− 2y)− 1) dy

= − 1

32 sh(1/2)

(
− 2(x− ct) sh(1− x+ ct)− 1

2
ch(1 + x− ct) +

1

2
ch(1− 3x+ 3ct)

− ch(2− 3x+ 3ct) + ch(2− x+ ct)
)

(43)

and

J3 = − 1

2 sh(1/2)

∫ 1

x

sh(−1/2− x+ y) · ch(1/2 + ct− y) · sh2(1/2 + ct− y)dy

= − 1

32 sh(1/2)

(
2(1− x) sh(x− ct) +

1

2
ch(2− x− 3ct)− 1

2
ch(2− 3x+ 3ct)

− ch(1 + x− 3ct) + ch(1− 3x+ 3ct)− ch(1− x− ct) + ch(1− x+ ct)
)
.

(44)

Plugging (42), (43) and (44) into (41), we deduce that for x > ct,

Gx(x) ∗
(
ch(ζ) sh2(ζ)

)
(x, t)

= − 1

32 sh(1/2)

(
2(1− x+ ct) sh(x− ct)− 2(x− ct) sh(1− x+ ct)

−3

2
ch(1 + x− ct) +

3

2
ch(2− x+ ct)

−3

2
ch(2− 3x+ 3ct) +

3

2
ch(1− 3x+ 3ct)

)
.

(45)

It follows from (32), (35), (40) and (45) that∫ ∞

0

∫ 1

ct

[
k1G(x) ∗

(
u3
c +

3

2
uc(∂xuc)

2

)
∂xϕ− k1

2
G(x) ∗ (∂xuc)

3ϕ

]
dxdt

=
k1a

3

8 sh(1/2)

∫ ∞

0

∫ 1

ct

ϕ

(
2 sh(3/2) · sh(1/2− x+ ct)− 2 sh(1/2) · sh(3/2− 3x+ 3ct)

)
dxdt

= k1a
3

∫ ∞

0

∫ 1

ct

ϕ
(
sh2(1/2) · sh(1/2− x+ ct)− sh3(1/2− x+ ct)

)
dxdt.

(46)

In a similar manner, for the case of x < ct, we have∫ ∞

0

∫ ct

0

[
k1G(x) ∗

(
u3
c +

3

2
uc(∂xuc)

2

)
∂xϕ− k1

2
G(x) ∗ (∂xuc)

3ϕ

]
dxdt

= k1a
3

∫ ∞

0

∫ ct

0

ϕG(x) ∗
(
3 sh(ζ) +

7

2
sh3(ζ)

)
− 3

2
ϕGx(x) ∗

(
ch(ζ) · sh2(ζ)

)
dxdt

=
k1a

3

8 sh(1/2)

∫ ∞

0

∫ ct

0

ϕ

(
− ch(2 + x− ct)− ch(1− x+ ct)

− ch(1 + 3x− 3ct)− ch(2 + 3x− 3ct)

)
dxdt

= k1a
3

∫ ∞

0

∫ ct

0

ϕ
(
− sh2(1/2) · sh(1/2 + x− ct) + sh3(1/2 + x− ct)

)
dxdt.

(47)
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Hence, associated with (46), we obtain∫ ∞

0

∫
S

[
k1G(x) ∗

(
u3
c +

3

2
uc(∂xuc)

2

)
∂xϕ− k1

2
G(x) ∗ (∂xuc)

3ϕ

]
dxdt

= k1a
3

∫ ∞

0

∫
S
ϕ
(
sh2(1/2) · sh(ζ)− sh3(ζ)

)
dxdt.

(48)

Now we compute directly that ∫ ∞

0

∫
S
k2G(x) ∗

(
u2
c +

1

2
(∂xuc)

2

)
∂xϕdxdt

=

∫ ∞

0

∫
S
k2ϕG(x) ∗ ∂x

(
u2
c +

1

2
(∂xuc)

2

)
dxdt

= −3k2
2

a2
∫ ∞

0

∫
S
ϕG(x) ∗ sh(2ζ)dxdt.

(49)

When x > ct, a direct calculation gives rise to

G(x) ∗ sh(2ζ)(t, x)

=
1

2 sh(1/2)

∫
S
ch(1/2− (x− y) + [x− y]) · sh (1− 2(y − ct) + 2[y − ct]) dy

=
1

2 sh(1/2)

[ ∫ ct

0

ch(1/2− x+ y) · sh(−1− 2y + 2ct)dy

+

∫ x

ct

ch(1/2− x+ y) · sh(1− 2y + 2ct)dy

+

∫ 1

x

ch(1/2 + x− y) · sh(1− 2y + 2ct)dy
]

=
2

3
[ch(1/2) sh(1/2− (x− ct))− sh(1/2− (x− ct)) ch (1/2− (x− ct))] .

(50)

In a similar manner, for x < ct,

G(x) ∗ sh(2ζ)(t, x)

=
2

3
[− ch(1/2) sh(1/2 + (x− ct)) + sh(1/2 + (x− ct)) ch (1/2 + (x− ct))] .

(51)

Plugging (50) and (51) into (49), it is deduced by a straightforward computation that∫ ∞

0

∫
S
k2G(x) ∗

(
u2
c +

1

2
(∂xuc)

2

)
∂xϕdxdt

= −k2a
2

∫ ∞

0

∫
S
ϕ (sh(ζ) ch(ζ)− ch(1/2) sh(ζ)) dxdt.

(52)

In view of (31), (48) and (52), we have∫ ∞

0

∫
S
[uc∂tϕ+

k1
3
u3
c∂xϕ+

k2
2
u2
c∂xϕ

+k1G(x) ∗
(
u3
c +

3

2
uc(∂xuc)

2

)
∂xϕ− k1G(x) ∗

(
(∂xuc)

3

2

)
ϕ

+k2G(x) ∗ (u2
c +

1

2
(∂xuc)

2)∂xϕ]dxdt+

∫
S
uc,0(x)ϕ(0, x)dx

=

∫ ∞

0

∫
S
ϕa

[
k1(1 + sh2(1/2))a2 + k2 ch(1/2)a− c

]
sh(ζ)dxdt.

(53)
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If a takes value as (17), then
k1(1 + sh2(1/2))a2 + k2 ch(1/2)a− c = 0,

which implies that ∫ ∞

0

∫
S
[uc∂tϕ+

k1
3
u3
c∂xϕ+

k2
2
u2
c∂xϕ

+k1G(x) ∗
(
u3
c +

3

2
uc(∂xuc)

2

)
∂xϕ− k1

2
G(x) ∗ (∂xuc)

3ϕ

+k2G(x) ∗ (u2
c +

1

2
(∂xuc)

2)∂xϕ]dxdt+

∫
S
uc,0(x)ϕ(0, x)dx = 0,

(54)

for any test function ϕ(x, t) ∈ C∞
c ([0,∞)× S). Thus the theorem is proved.

Remark 5 In particular, when k1 = 0, k2 ̸= 0, we obtain a =
c

k2 ch(1/2)
. In general, if k1 ̸= 0, then we can derive

a =
−k2 ch(1/2)±

√
k22 ch

2(1/2) + 4k1(1 + sh2(1/2))c

2k1(1 + sh2(1/2))
. (55)

If k22 ch
2(1/2) + 4k1(1 + sh2(1/2))c ≥ 0, then a is a real number. If k22 ch

2(1/2) + 4k1(1 + sh2(1/2))c ≤ 0, then a
is a complex number, which means that the periodic peakons with complex coefficient are found. The graph 2(a) and 2(b)
show the shape of periodic peakons.
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Figure 2: The graph of periodic peakons for Novikov-CH equation.
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