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Abstract:The two point boundary value problems with Neumann and mixed Robbin’s boundary conditions
have great importance in chemical engineering, deflection of beams etc. It is not easy task to solve numer-
ically such type of problems. In this paper, Galerkin-finite element method is proposed for the numerical
solution of the boundary value problem having mixed Robbin’s and Dirichlet’s conditions. Two test prob-
lems are taken to show the accuracy of the result. The numerical solutions are compared with the analytic
solution available in the literature and found very similar to the analytic solution.
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1 Introduction
Two-point boundary value problems arise in a number of different applications which include, for example, deflection
of beams and initial boundary value problem for partial differential equations. The problem is of considerable practical
importance, for example, in determine the efficiency of solvent utilization or filtrate recovery in the washing of filter cakes
[1]. Many researchers have developed numerical technique to study the numerical solution of two point boundary value
problems. Shelly et al. [2] has proposed orthogonal collocation on finite elements for the solution of two point bound-
ary value problems. Villadsen and Stewart [3] proposed solution of boundary value problem by orthogonal collocation
method. Jang [4] proposed the solution of two-point boundary value problem by the extended Adomian decomposition
method. The Galerkin-finite element method is well known numerical technique for the numerical solution of differen-
tial equations. Dogan [5] proposed the Galerkin-finite element approach for the numerical solutions of Burgers’ equation.
Sengupta et al. [6] carried out Gakerkin finite element methods for wave problems. Kaneko et al. [7] discussed the Discon-
tinuous Galerkin-finite element method for parabolic problems. EI-Gebeily et al. [8] studied the finite element- Galerkin
method for singular self-adjoint differential equations. Sharma et al. [9] proposed Galerkin-finite Element Methods for
numerical solution of advection- diffusion equation. Reddy, Noye and Hutten explained the detail of the finite element
method in their books [10-12]. Onah [13] proved the asymptotic convergence of the solution of a parabolic equation by
using two methods namely, the Galerkin method expressed in terms of linear splines and the Finite Element Collocation
method expressed by cubic spline basis functions. Galerkin finite element method for the approximation of a nonlinear
integro-differential equation associated with the penetration of a magnetic field into a substance is studied by Jangveladze
et al. [14] In the present work, we use Galerkin-finite element method for the numerical solution of two point boundary
value problem of the form

b1
∂2c

∂x2
+ b2

∂c

∂x
= b3

∂c

∂t
(1)

with boundary conditions

a1c+ a2
∂c

∂x
= k1, at x = 0,
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a3c+ a4
∂c

∂x
= k2, at x = 1

In this paper, we have proposed a simple finite element method to find the approximate solutions of two point boundary
value problems. The stability of the proposed method is discussed and shown that the method is conditionally stable.

2 Semidiscrete Finite Element Models
The semi discrete formulation involves approximation of the spatial variation of the dependent variable. The first step
involves the construction of the weak form of the given problem over a typical element. In second step, we develop the
finite element model by seeking approximation of the solution.

2.1 Weak Formulation of the Problem
The weak formulation of the given problem (1) over a typical linear element (xa, xb) is given by∫ xb

xa

w

(
b1
∂2c

∂x
+ b2

∂c

∂x
− b3

∂c

∂t

)
dx = 0 (2)

∫ xb

xa

(
b1
∂w

∂x

∂c

∂x
− b2w

∂c

∂x
+ b3w

∂c

∂t

)
dx = 0 (3)

2.2 Finite Element Formulation of the Problem
The finite-element model may be obtained from equation (3) by substituting finite element approximations in the decou-
pled form

c(x, t) =
N∑
j=1

cej(tn)ψ
e
j (x);n = 1, 2 : (4)

Substituting w = ψi(x) and (4) in equation (3) to obtain the ith equation of the system, we have

∫ xb

xa

b1 ∂ψi

∂x

 N∑
j=1

cj
dψi

dx

 cj − b2ψi

 N∑
j=1

cj
dψj

dx

+ b3ψi

 N∑
j=1

dcj
dt
ψj

 dx = 0 (5)

N∑
j=1

[
b1

(∫ xb

xa

dψi

dx

dψj

dx
dx

)
cj − b2

(∫ xb

xa

ψj
dψj

dx
dx

)
cj + b3

(∫ xb

xa

ψiψjdx

)
dcj
dt

]
= 0 (6)

The system (6) can be written in the matrix form

[K1]{c} − [K2]{c}+ [M ]{ċ} = 0 (7)

where

K1
ij =

∫ xb

xa

b1
dψi

dx

dψj

dx
dx

K2
ij =

∫ xb

xa

b2ψi
dψj

dx
dx

Mij =

∫ xb

xa

b3ψiψjdx (8)

The system (7) can be written as

[K]{c}+ [M ]{ċ} = 0 (9)

where
[K] = [K1]− [K2]
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We use the linear piecewise approximation in the space variable and the Galerkin method to obtain the semi discrete
approximation to equation (1)

ce (x, t) = ψi−1 (x) ci−1 (t) + ψi (x) ci (t) (10)

where
ψi−1 (x) =

x− xi−1

xi − xi−1
, ψi (x) =

xi − x

xi − xi−1
(11)

We have used the linear piecewise approximation (10) and (11) to find out the integral in the equation (8). Then, the
system (9) become

[M ] {ċ}+ [K] {c} = 0 (12)

where

[K] =
b1
h

[
1 −1
−1 1

]
− b2

2

[
−1 1
−1 1

]
, [M ] =

b3h

6

[
2 1
1 2

]
(13)

{ċ} =

[
˙ci−1

ċi

]
, {c} =

[
ci−1

ci

]
(14)

3 Fully Discretized Finite Element Equations
We have the system of ordinary differential equations as follows

[M ]
{
Ċ
}
+ [K] {C} = 0 (15)

subject to the initial condition
{C}0 = ϕ(x) = {C0}

where {C}0 denotes the vector of nodal values of C at time t = 0 whereas{C0} denotes the column of nodal values
cj0.

As applied to a vector of time derivatives of the nodal values the weighted average of approximation on the equation
(15), we have

[M ]

(
{C}n+1 − {C}n

∆t

)
+ θ[K] {C}n+1

+ (1− θ)[K] {C}n = 0 (16)

The equation (16) can be written in simple form as

([M ] + ∆tθ[K]) {C}n+1
= [M ] {C}n −∆t (1− θ) [K] {C}n (17)

The algebraic system (17) is solved by Gauss elimination method by taking Crank-Nicolson Scheme i.e θ = 1
2 in

equation (17).

3.1 Stability Analysis of the Scheme
After assembling and using Crank-Nicolson Scheme, we have

 b1
h + b2(3+2∆th)

6
−b1
h + b2(−6+h∆t)

12 0
−b1
h + b2(6+h∆t)

12
2b1
h + b2h∆t

3
−b1
h + b2(−6+h∆t)

12

0 −b1
h + b2(6+h∆t)

12
b1
h + b2(−3+2∆th)

6


cn+1

i−1

cn+1
i−1

cn+1
i−1

 =

 b1
h + b2(3+2∆th)

6
−b1
h + b2(−6+h∆t)

12 0
−b1
h + b2(6+h∆t)

12
2b1
h + b2h∆t

3
−b1
h + b2(−6+h∆t)

12

0 −b1
h + b2(6+h∆t)

12
b1
h + b2(−3+2∆th)

6


cni−1

cni−1

cni−1

 (18)

where h and ∆t are step sizes along x-axis and time direction respectively. The finite element difference-differential
equation at the ith node is given by
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α1c
n+1
i−1 + α2c

n+1
i + α3c

n+1
i+1 = β1c

n
i−1 + β2c

n
i + β3c

n
i+1 (19)

where

α1 =
−b1
h

+
b2(6 + h∆t)

12
, α2 =

2b1
h

+
b2h∆t

3
, α3 =

−b1
h

+
b2(−6 + h∆t)

12

and

β1 =
−b1
h

+
b2(6− h∆t)

12
, β2 =

2b1
h

− b2h∆t

3
, β3 =

−b1
h

+
b2(−6− h∆t)

12

Substituting cni = Aξnexp(jβh) where β the mode number, h is the element size and j =
√
−1, we obtain

ξ(α1 + α2exp(jβh) + α3exp(2jβh)) = β1 + β2exp(jβh) + β3exp(2jβh) (20)

Dividing the equation (20) by exp(2jβh) both and simplification we have

ξ =
(β1exp(−2jβh) + β2exp(−jβh) + beta3)

(α1exp(−2jαh) + α2exp(−jαh) + alpha3)
(21)

The scheme will be stable if |ξ| ≤ 1, hence the scheme is conditionally stable.

4 Numerical Experiment And Discussion

In this section, we have studied two test examples to check the accuracy of the proposed numerical scheme. Problem 1:
Consider a diffusion reaction problem with mixed boundary conditions as:

∂C

∂t
=

1

P

∂2C

∂x2
− ∂C

∂x
(22)

C − 1

P

∂C

∂x
= 0, at x = 0, for all t ≥ 0,

∂C

∂x
= 0, at x = 1, for all t ≥ 0,

C = 1, at t = 0, for all x

The problem is solved by the proposed method for different values of P and at different times up to t = 2. Figures 1-4
show the behavior of approximated solutions at different values of P. Figure 5 shows the approximated solutions at t = 1
for different values of P. The Figures show the approximated solutions are becoming smaller as we increase the value of P
(i.e. the role of diffusion term decreases) up to x = 0.9. The Figure 6 compares the analytic and approximated solutions
given in [4] at P = 6.

Problem 2: In this problem, we have considered the problem (22) with the following initial and Dirichlet’s boundary
conditions as follows

C = 1, at t = 0, for all x

C = 0 at x = 0, and
∂C

∂x
= 0, at x = 1, for all t ≥ 0,

The results of the problem are shown in the Figures 7-12. Figures 7-10 show the behavior of approximated solutions
at different values of P . Figure 11 shows the approximated solutions at t = 1 for different values of P . The Figures show
the approximated solutions are becoming smaller as we increase the value of P (i.e. the role of diffusion term decrease
in the right of the domain after x = 0.6. The Figure 12 compares the analytic and approximated solutions given in [4] at
P = 8.
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5 Conclusion

In this article, Galerkin-finite element method is proposed to find the approximate solutions of two point boundary value
problems (BVP). In the solution procedure, the first step is to make weak formulation and then develop finite element
formulation. Lastly, weighted average is used for fully discretization. The stability of the proposed method is discussed
and shown that the method is conditionally stable. As test problem, two different solutions of two point BVP are chosen.
Also, a comparison of numerical and analytical solutions is made and found that the proposed scheme has good accuracy.
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Fig.1. The physical behavior of approximated solution of Example 1 Fig.2. The physical behavior of approximated solution of
for P = 5.0. Example 1 for P = 10.0.
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Fig.3. The physical behavior of approximated solution of Example 1 Fig.4. The physical behavior of approximated solution of
for P = 15.0. Example 1 for P = 20.0.
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Fig.5. The physical behavior of approximated solution of Example 1 Fig.6. Comparison of analytic and numerical solution of
for different P at T = 1. Example 1 for P = 6.
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Fig.7. The physical behavior of approximated solution of Example 2 Fig.8. The physical behavior of approximated solution of
for P = 5.0. Example 2 for P = 10.0.
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Fig.9. The physical behavior of approximated solution of Example 2 Fig.10. The physical behavior of approximated solution of
for P = 15.0. Example 2 for P = 20.0.
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Fig.11. The physical behavior of approximated solution of Example 2 Fig.12. Comparison of analytic and numerical solution of
for different P at T = 1. Example 2 for P = 8.
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