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Abstract: Let µ be a random self-conformal measure on Rd associated with a family of contractive conformal
mappings {Si}Ni=1 and a probability vector (pi)Ni=1. When {Si}Ni=1 satisfies the strong open set condition,
we determine the quantization dimension D∞(µ) and show that it coincides with the unique solution of the
Bowen equation.
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1 Introduction
The quantization problem originates in the theory of signal processing and data compression. It was used by electrical
engineers starting in the late 40’s. The notion of quantization dimension was first introduced by Zador (see [9]). Mathe-
matically, the main idea is to approximate a given probability measure by discrete probability measures with finite support.
One can refer to Graf and Luschgy (see [6]) for details. Much of the previous work is based in Lr metrics 0 < r < ∞
as a measure of the quantization error(see [2–4, 6, 7, 9]). Recently Zhu (see [12]) investigates the quantization dimension
with respect to the geometric error (r → 0) for self-conformal measures. In this paper we determine the quantization
dimension for random self-conformal measures in case r = ∞.

Let U ⊂ Rd be a connected and open subset. For 0 < γ 6 1, denote by Con1+γ
0 (U) the family of conformal

diffeomorphisms S : U → S(U) for which there exists a constant CS such that

|S
′
(x)− S

′
(y)| 6 CS |x− y|γ

for all x, y ∈ U , where S
′
(x) is the differential of S at x, and |S′

(x)| is the operator norm of the differential.
Let N > 2 be a positive integer, we are given N conformal diffeomorphisms Si : U → Si(U), for all i = 1, ..., N .

Consider the product space Ω0 = (Con1+γ
0 (U))N × [0, 1]N , which is a separable metrical space with the Borel σ-algebra

F0.
By Patzschke (see [8]), a probability measure P0 on (Ω0,F0) is a random conformal function system if

i) there exists a compact connected subset K ⊂ U with K = intK such that Si(intK) ⊂ intK and Si(U) ∩ Sj(U) = ∅
for i, j = 1, · · · , N, i ̸= j,
ii) there exist constants C0 ≥ 0, 0 < rmin ≤ rmax < 1 and 0 < pmin ≤ pmax < 1 such that CSi ≤ C0, rmin ≤ |S′

(x)| ≤
rmax and pmin ≤ pi ≤ pmax for all i = 1, · · · , N and P0-almost all (S1, · · · , SN ; p1, · · · , pN ), and

iii)
∫ N∑

i=1

piP0(d(S1, · · · , SN ; p1, · · · , pN )) = 1.

For the random variable (S1, · · · , SN ; p1, · · · , pN ), a unique compact random set E ⊂ U is called a random self-

conformal set associated to P0 if E
d
=

N∪
i=1

SiEi, where the Ei, i = 1, · · · , N , are independent copies of E and independent

of (S1, · · · , SN ; p1, · · · , pN ). In analogy a random measure µ with supp(µ) = E is called a random self-conformal

measure associated to P0 if µ
d
=

N∑
i=1

piµi ◦ S−1
i , where the µi, i = 1, · · · , N , are independent samples of µ and independent

of (S1, · · · , SN ; p1, · · · , pN ). We say they are random self-similar sets and measures when Si are similarities.
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Throughout β is assume to be locally finite in the sense that the number of points of α within any bounded subset of
Rd is finite. The Vornoi region generated by a ∈ α is defined by

W (a|α) = {x ∈ Rd : ∥x− a∥ = min
b∈α

∥x− b∥}.

The Vornoi regions W (a|α) are closed and star-shaped relative to a and the Voronoi diagram {W (a|α) : a ∈ α} of α
provides a covering of Rd. A Borel measurable partition {Aa : a ∈ α} of Rd is called Vornoi partition with respect to α if

Aa ⊂ W (a|α) for every a ∈ α.

Following the work of Graf and Luschgy (see [6]), we define the quantization dimension as following. Let µ be a
random measure on Rd. For g : Rd → R is Borel measurable, define

∥g∥µ,∞ = ∥g∥∞ = inf{c ≥ 0 : ∥g∥ ≤ c, µ− a.s.},

and

en,∞(µ) = inf{∥dα∥∞ : α ⊂ Rd, 1 ≤ card(α) ≤ n},

where dα(x) = d(x, α) = inf
a∈α

∥x− a∥, ∥dα∥∞ = sup
x∈supp(µ)

dα(x).

Note that if supp(µ) is compact, then en,∞(µ) < ∞. It follows from the continuity of dα that ∥dα∥∞ = sup
x∈supp(µ)

dα(x)

and hence

en,∞(µ) = inf{ sup
x∈supp(µ)

min
a∈α

∥x− a∥ : α ⊂ Rd, 1 ≤ card(α) ≤ n}.

So if we define for a nonempty compact set A ⊂ Rd,

en,∞(A) = inf{max
x∈A

min
a∈α

∥x− a∥ : α ⊂ Rd, 1 ≤ card(α) ≤ n}

then en,∞(µ) = en,∞(A) for every probability measure µ with supp(µ) = A. If the infimum is attained at some α ⊂ Rd

with 1 ≤ card(α) ≤ n, then the set α is called an n-optimal set for µ of order ∞. The collection of all the n-optimal sets
is denoted by Cn, ∞(A).

The upper and lower quantization dimension D∞(µ), D∞(µ) of µ are defined as

D∞(µ) := lim sup
n→∞

log n

− log en,∞(µ)
, D∞(µ) := lim inf

n→∞

log n

− log en,∞(µ)

with probability one. If D∞(µ) = D∞(µ), the common value is called the quantization dimension of µ and denoted by
D∞(µ).

Proposition 1 (Cf. Proposition 11.3. in [6]) If 0 ≤ t < D∞(µ) < s, then

lim
n→∞

netn,∞(µ) = +∞ and lim inf
n→∞

nesn,∞(µ) = 0.

Similar statements hold for the upper quantization dimension.

If the strong separation condition (SSC) holds, i.e., if there is an open set O satisfying Si(O) ⊂ U for all i and
min
i̸=j

inf{d(Si(x), Si(y)) : x, y ∈ O} > 0. Graf and Luschgy (see [6]) proved that the quantization dimension (of

order ∞) for a self-similar measure on Rd coincides with the similarity dimension of {Si}Ni=1 under the SSC. We say that
P0(orP) satisfies the strong open set condition (SOSC), if there is an open set O with
(i) Si(O) ⊂ O for all i = 1, ..., N with probability one,
(ii) Si(O) ∩ Sj(O) = ∅ for all i ̸= j, i, j = 1, ..., N with probability one, and
(iii) E ∩O ̸= ∅ with probability one.

In this paper, we will extend their result to random self-conformal measures. That is,

Theorem 2 Let µ be the random self-conformal measure associated with (S1, · · · , SN ; p1, · · · , pN ). Suppose that the
SOSC is satisfied, then the quantization dimension D∞(µ) exists and equals the unique solution D of Bowen equation
P (D) = 0.
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2 Definitions and notations
Let Σ =

{
1, · · · , N

}N be the set of infinite sequences of integers from 1 to N , consider the shift operator T : Σ → Σ,
defined by T (σ) = σ2σ3 · · · for σ = σ1σ2σ3 · · · ∈ Σ. Denote by Σn = {1, · · · , N}n the set of sequences of length n

and by Σ∗ =
∞∪

n=0
Σn the set of all sequences of finite length including ∅. For τ ∈ Σn, denote by |τ | = n the length of the

sequence. If τ ∈ Σ∗ and σ ∈ Σ∗ ∪ Σ let ∆τσ = τ ∗ σ be the sequence consisting of the concatenation of both sequences.
The truncation of a sequence to the first k entries is denoted by σ|k = σ1 · · ·σk where σ ∈ Σ or σ ∈ Σn with n ≥ k, and
σ− = σ|k−1 = σ1 · · ·σk−1. We call τ a predecessor of σ and write τ ≺ σ for τ ∈ Σ∗ and σ ∈ Σ∗

∪
Σ if σ||τ | = τ . We

say σ, τ are incomparable if neither τ ≺ σ nor σ ≺ τ . Further, let [σ] = {τ ∈ Σ : σ ≺ τ} be the cylinder set of sequences
starting with σ, σ ∈ Σ∗.

Next let Ω = ΩΣ∗
0 , F be the product σ-algebra on Ω, and P be the product measure on Ω with P0 on each component,

we say that P is a random conformal iterated function system. Thus we get the primary probability space (Ω,F,P). This
space assigns to each finite τ ∈ Σ∗ a random variable (Sτ∗1, ..., Sτ∗N ; pτ∗1, ..., pτ∗N ). Write the elements ω ∈ Ω in the
form

ω(τ) = (Sτ∗1, ..., Sτ∗N ; pτ∗1, ..., pτ∗N )

for τ ∈ Σ∗. Define

Sτ = Sτ |1 ◦ · · · ◦ Sτ ||τ| , pτ = pτ |1 · · · pτ ||τ|

and S∅ = id, p∅ = 1 for τ ∈ Σ∗.
We say the µ and E are random self-conformal sets and measures when Si are conformal. The similarity dimension

for this collection {Si}Ni=1 is defined as the unique positive solution s of the equation

N∑
i=1

ELip(Si)
s = 1.

In this paper the role of similarity dimension is played by the unique solution s of the Bowen equation P (D) = 0, where
the pressure P (t) defined by

P (t) = lim
n→∞

1

n
log sup

x∈E

∑
τ∈Σn

E|S
′

τ (x)|t,

for t > 0. It is immediate that the Hausdorff measure HD(E) < ∞.
A useful tool for the investigation of the random fractal is the notion of a finite maximal Markov antichain. We call a

finite random subset Γ(ω) ⊂ Σ∗ a finite maximal Markov antichain if
(i) every distinct words in Γ(ω) are incomparable,
(ii) every τ ∈ Σ has a predecessor in Γ(ω), and
(iii) {ω ∈ Ω : τ ∈ Γ(ω)} ∈ F|τ | for all τ ∈ Σ∗.

If (q1, · · · , qN ) is an N -tuples random numbers with E
N∑
i=1

qi = 1 and Γ(ω) is a finite maximal Markov antichain then

E
∑

σ∈Γ(ω)

qσ = 1. (1)

If 0 ≤ ε ≤ min{q1, · · · , qN} then

Γ(ε) = {σ ∈ Σ∗ : qσ− ≥ ε > qσ}

is a finite maximal Markov antichain.
For every τ ∈ Σ∗, write ∥S

′

τ∥ := sup
{
|S

′

τ (x)| : x ∈ E
}

. As the same proof as Lemma 2.1 in [8], we have there is a
constant C ≥ 1 such that

|S
′

τ (x)| ≤ C|S
′

τ (y)|, for all x, y ∈ E and all τ ∈ Σ∗ (2)
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with probability one. This implies that

C−1∥S
′

τ∥ ≤ |S
′

τ (x)| ≤ ∥S
′

τ∥, for all x ∈ E and all τ ∈ Σ∗ (3)

with probability one. By [8], Lemma 2.2, there is a constant C̃ ≥ C such that

C̃−1∥S
′

τ∥d(x, y) ≤ d(Sτ (x), Sτ (y)) ≤ C̃∥S
′

τ∥d(x, y) for all x, y ∈ K and all τ ∈ Σ∗ (4)

with probability one. And by [8], Corollary 2.3, we have for τ ∈ Σ∗,

C̃−1∥S
′

τ∥|K| ≤ |Kτ | ≤ C̃∥S
′

τ∥|K| (5)

with probability one, where Kτ := Sτ (K).

3 Proof of main result
In this section, we will prove Theorem 2. First we need some lemmas as following.

Lemma 3 Let A ⊂ Rd be a nonempty compact set and let S : Rd → Rd be a conformal mapping, then

C̃−1∥S
′
∥en,∞(A) ≤ en,∞

(
S(A)

)
≤ C̃∥S

′
∥en,∞(A)

with probability one.

Proof. This is obvious by the definition of en,∞(A) and (5).

Lemma 4 Let Γ be a finite maximal Markov antichain. Then for all n ≥ |Γ|,

en,∞(µ) ≤ min
{
max
σ∈Γ

C̃∥S
′

σ∥enσ,∞(µ) : nσ ≥ 1,
∑
σ∈Γ

nσ ≤ n
}

with probability one.

Proof. For nσ ≥ 1 with
∑
σ∈Γ

nσ ≤ n, let ασ ∈ Cnσ,∞(Sσ(E)) and let α =
∪
σ∈Γ

ασ. Then |α| ≤ n. Since supp(µ◦S−1
σ ) =

Sσ(E) , by Lemma 6, we have

en,∞(µ) = en,∞(E) ≤ max
x∈E

min
a∈α

∥x− a∥

= max
σ∈Γ

max
x∈Sσ(E)

min
a∈α

∥x− a∥ ≤ max
σ∈Γ

max
x∈Sσ(E)

min
a∈ασ

∥x− a∥

= max
σ∈Γ

enσ,∞(Sσ(E)) ≤ max
σ∈Γ

C̃∥S
′

σ∥enσ,∞(E)

= max
σ∈Γ

C̃∥S
′

σ∥enσ,∞(µ)

with probability one. The lemma is proved.
Hence we obtain the following theorem.

Theorem 5 Let D be a the unique solution of the Bowen equation P (D) = 0. Then

lim sup
n→∞

nen,∞(µ)D < +∞,

in particular, the upper quantization dimension D∞(µ) of µ is less than or equal to D.

Proof. Let qσ = ∥S′

σ∥D and ε0 = min{q1, · · · , qN}. Let m,n ∈ N be arbitrary with m
n < ε20. Set ε = ε−1

0
m
n and

Γ(ε) = {σ ∈ Σ∗ : qσ− ≥ ε > qσ}. It is easy to show Γ(ε) is a maximal Markov finite antichain. It follows by (1) that

1 = E
∑

σ∈Γ(ε)

qσ = E
∑

σ∈Γ(ε)

qσ−qσ|σ| ≥ εε0|Γ(ε)|,

IJNS email for contribution: editor@nonlinearscience.org.uk



P. Xiao, et al: Quantization Dimension of Order ∞ for Random Self-conformal Measures 245

hence

|Γ(ε)| ≤ (εε0)
−1 =

m

n
.

By Lemma 4, choosing nσ = m ≥ 1,

en,∞(µ)D ≤ E max
σ∈Γ(ε)

C̃D∥S
′

σ∥Dem,∞(µ)D ≤ C̃Dεem,∞(µ)D

= C̃Dε−1
0

n

m
em,∞(µ)D,

and, hence,

nen,∞(µ)D ≤ C̃Dε−1
0 mem,∞(µ)D.

For fixed m this holds for all but finitely many n and yields

lim sup
n→∞

nen,∞(µ)D < +∞,

The remaining statement of this theorem follows from Proposition 1.

Remark 6 The proof of the preceding theorem shows that

lim sup
n→∞

nen,∞(µ)D ≤ Emax{∥S
′

1∥−D, · · · , ∥S
′

N∥−D} inf
m∈N

mem,∞(µ)D.

Next we will show the following theorem.

Theorem 7 Let {Si}Ni=1 satisfy the SOSC and let D be a the unique solution of the Bowen equation P (D) = 0. Then

lim inf
n→∞

nen,∞(µ)D > 0,

in particular, the lower quantization dimension D∞(µ) of µ is greater than or equal to D.

Remark 8 By the fact ∥ · ∥r ≤ ∥ · ∥s for 1 ≤ r ≤ s ≤ ∞, we know en,r(µ) < en,s(µ). So the preceding theorem is
equivalent to

lim inf
n→∞

nen,1(µ)
D > 0. (6)

To prove (6), we need the following lemmas.

Lemma 9 There exists a constant c > 0 with

µ(B(a, r)) ≤ crD

for every a ∈ E and r > o with probability one under the SOSC, where (B(a, r)) is an open ball.

Proof. By [1], we know the Hausdorff measure HD(E) > 0 under the SOSC. Also with HD(E) < ∞.

Lemma 10 Assume that there is a constant c > 0 with

µ(B(a, r)) ≤ crD

for every a ∈ E and r > o with probability one. Then there exists a constant c1 > 0 with

E
∫
B

∥x− a∥dµ(x) ≥ c1µ(B)1+
1
D (7)

for all a ∈ Rd and all Borel sets B ⊂ Rd with probability one.
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Proof. Let a ∈ Rd and let B be a Borel subset of Rd. If µ(B) = 0 then the conclusion (7) obvious holds. We assume
µ(B) > 0 and set rB = inf{r > 0 : µ(B(a, r)) ≥ 1

2µ(B)}. Since lim
r→∞

µ(B(a, r)) = 1 ≥ µ(B), there is an r > 0 with

µ(B(a, r)) ≥ 1
2µ(B). Hence, rB < ∞.

For r > rB , it follows by Lemma 9 that crD ≥ µ(B(a, r)) ≥ 1
2µ(B) which implies

crDB ≥ 1

2
µ(B). (8)

For r < rB we have µ(B(a, r)) < 1
2µ(B).

If (rn)n∈N is any increasing sequence with rn < rB and lim
n→∞

rn = rB , we deduce from B(a, rB) =
∪

n∈N
B(a, rn)

that

µ(B(a, rB)) = lim
n→∞

µ(B(a, rn)) ≤
1

2
µ(B). (9)

Using (8) and (9) we get

E
∫
B

∥x− a∥dµ(x) ≥ E
∫

B\B(a,rB)

∥x− a∥dµ(x) ≥ rBµ(B \B(a, rB))

≥ rB(µ(B)− µ(B(a, rB))) ≥
1

2
rBµ(B)

≥ 1

2
(
1

2c
)

1
D µ(B)1+

1
D .

Thus let c1 = 1
2 (

1
2c )

1
D , the lemma is proved.

Corollary 11 Assume that there is a constant c > 0 with

µ(B(a, r)) ≤ crD

for every a ∈ E and r > o with probability one. Then there exists a constant c2 > 0 such that for every µ-packing

{B1, · · · , Bn} in Rd with µ(Rd \
n∪

i=1

Bi) = 0 and all a1, · · · , an ∈ Rd:

n
( n∑
i=1

E
∫
Bi

∥x− ai∥dµ(x)
)D ≥ c2

with probability one.

Proof. Set p = 1 + 1
D and let q = 1 +D. Then we have

1

p
+

1

q
= 1, and p > 1.

Hölder’s inequality yields

S :=

n∑
i=1

1
(
E
∫
Bi

∥x− ai∥dµ(x)
) D

1+D

≤
( n∑
i=1

1q
) 1

q
( n∑
i=1

(
E
∫
Bi

∥x− ai∥dµ(x)
) D

1+D p) 1
p

= n
1
q
( n∑
i=1

E
∫
Bi

∥x− ai∥dµ(x)
) 1

p .

This implies

Sq ≤ n
( n∑
i=1

E
∫
Bi

∥x− ai∥dµ(x)
)D

.
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Using Lemma 11 we get for the constant c2 > 0 of that proposition

S :=
n∑

i=1

(
E
∫
Bi

∥x− ai∥dµ(x)
) D

1+D

≥
n∑

i=1

(c1)
D

1+D µ(Bi) = (c1)
D

1+D .

Thus, the corollary holds, if we set c2 = (c1)
D.

Proof of Theorem 7 Let αn ∈ Cn,1 and let {Aa : a ∈ αn} be a Voronoi partition of Rd with respect to αn. By
Corollary 3.1 we have

nen,1(µ)
D = n

( ∑
a∈αn

E
∫
Aa

∥x− a∥dµ(x)
)D ≥ c2 > 0.

This implies Remark 8, the remaining statement of Theorem 7 follows from Proposition 1. The theorem is proved.
So we can prove Theorem 1 immediately.
Proof of Theorem 2 Combing Theorem 5 and Theorem 7, Theorem 2 is obvious.
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