The Property of Operators in a Non-Wandering C_0-Semigroup

Jianmei Zhang *,
Department of Mathematics, Jiangsu University Nonlinear Scientific Research Center, Jiangsu University Zhenjiang, Jiangsu, 212013, P.R.China
(Received 28 June 2012 , accepted 26 May 2013)

Abstract: In this paper, we studied the property of operators in a non-wandering semigroup on Banach space. We obtain the necessary and sufficient conditions that discrete semigroup is non-wandering. By a new method, a sufficient conditions for strongly continuous semigroup being non-wandering is given.

Keywords: non-wandering operator; semigroup; discrete semigroup; continuous semigroup; strongly continuous semigroup

1 Introduction

In the infinite-dimensional linear space, chaotic operators, supercyclic operators and Hypercyclic operators have been intensively studied recently. In 1929, Birkhoff firstly introduced the concept of hypercyclic operators [2]. From then on, mathematicians from all over the world have great interests in this field. For more details about hypercyclic operators see the survey [3,4,5].

In 1996, Lixin Tian and Diancheng Lu introduced the concept of non-wandering operators [6]. They are new linear chaotic operators and are related to hypercyclic operators, but different from them. For more details about non-wandering operators see the survey [8,11,12].

The investigation of hypercyclic semigroups was initiated by Desh, Schappacher and Webb in [7]. In 2007, Jose A.C. Conero, V. Muller, A. Peris studied the hypercyclic behavior of operators in a hypercyclic strong continuous semigroups [1].

In 2002, Xun Liu introduced non-wandering semigroups [9-10]. In his paper, he mainly introduced continuous semigroup. We can extend this definition to discrete semigroup. It is easy to see that if T is a non-wandering operators, then the discrete semigroup $(T^n)_{n=1}^\infty$ is non-wandering. And the inverse situation is affirmative (if the discrete semigroup $(T^n)_{n=1}^\infty$ is a non-wandering operators, then T is non-wandering). In continuous semigroup, even more strongly continuous semigroup, the relative result is not so easy. In our paper, we introduce that if $\{T_t\}_{t \geq 0}$ is a strongly continuous semigroup (or C_0-semigroup) of operators in $L^1(X)$ and some operator T_{t_0} ($t_0 > 0$) in the semigroup is nonwandering, then the semigroup $\{T_t\}_{t \geq 0}$ itself is nonwandering.

2 Basic notations and definitions

Given an infinite-dimensional separable real or complex Banach space $(X, \| \cdot \|)$, we denote by $L^1(X)$ the set of all bounded linear operators in X equipped with the operator norm $\|T\| = \sup_{\|x\| \leq 1} \|Tx\|$.

We will refer to N, Z, Q, R (R_+), C and K as the sets of positive integers, integers, rational numbers, and the real (positive real), complex scalar fields and real number field or complex number field, respectively.

Definition 1 Suppose $T \in L^1(X)$ and $x \in X$, for any neighborhood $U(x)$, if there exists $k \in N$ such that $T^k(U(x)) \cap U(x) \neq \emptyset$, then x is called nonwandering point of T.

Definition 2 Suppose $E \subset X$ is a closed linear subspace of X and $E_1 \subset E$, $E_2 \subset E$ are also closed linear subspaces in X. For arbitrary $x \in E$, if there is a unique decomposition such that $x = x_1 + x_2$, $x_1 \in E_1$, $x_2 \in E_2$, $E_1 \cap E_2 = \{0\}$, then E is called the direct sum of E_1 and E_2, and written as $E = E_1 \oplus E_2$, where \oplus represents direct sum.

* Corresponding author. E-mail address: leo_zsc@ujs.edu.cn
Definition 3 Suppose \(T \in L(X) \).

(1) Assume that there exists a closed subspace \(E \subset X \), which has hyperbolic structure: \(E = E_u \oplus E_s, T E_s = E_s, T E_u = E_u \), where \(E_u, E_s \) are closed subspaces. In addition, there exist constants \(\tau (0 < \tau < 1) \) and \(c > 0 \), such that for any \(x_u \in E_u, k \in \mathbb{N}, \| T^k x_u \| \geq c \tau^{-k} \| x_u \| \), and for any \(x_s \in E_s, k \in \mathbb{N}, \| T^k x_s \| \leq c \tau^k \| x_s \| \);

(2) Assume also that \(\text{Per}(T) \) is dense in \(E \), i.e. \(\text{per}(T) = E \).

Then \(T \) is said to be a nonwandering operator relative to \(E \).

From definition 1 and definition 3, we can obtain the following proposition.

Proposition 1 If \(T \) is a nonwandering operator relative to \(E \), then for any \(x \in E \) is a nonwandering point of \(T \).

Proof. Since \(T \) is a nonwandering, for any \(x \in E = \text{per}(T) \), there exist \(\{ x_n \} \subset \text{per}(T) \) such that \(\lim_{n \to \infty} x_n = x \), and for all \(n \), there exist \(k_n \in \mathbb{N} \) such that \(T^{k_n} x_n = x_n \).

For any \(\varepsilon > 0 \), there exist \(n_0 \in \mathbb{N} \) such that \(x_{n_0} \in U(x, \varepsilon) \).

We have

\[x_{n_0} \in T^{k_n} (U(x, \varepsilon)) \cap U(x, \varepsilon). \]

i.e.

\[T^{k_n} (U(x, \varepsilon)) \cap U(x, \varepsilon) \neq \emptyset. \]

So \(x \) is a non-wandering point of \(T \).

Definition 4 A non-empty subset \(A \subset L(X) \) is called a semigroup if

\[T, S \in A \Rightarrow T \circ S \in A \quad (\forall T, S \in A). \]

A semigroup \(A \) is called abelian if

\[T \circ S = S \circ T \quad (\forall T, S \in A). \]

Remark 2 We shall study mainly operator semigroups indexed by non-negative integers or non-negative reals (we call them one-parameter semigroups). Obviously, any one-parameter semigroup is abelian.

Definition 5 If a semigroup is indexed by \(R^+ \), we call it continuous. Let us use the notation \(\{ T_t \}_{t \geq 0} \). If a semigroup is indexed by \(\mathbb{N} \), we call it discrete. Let us use the notation \(\{ T_n \}_{n=1}^{\infty} \), generated by a single operator \(T \).

In the following, we introduced detailly definition of \(C_0 \)-semigroup:

Definition 6 In the continuous case, a one-parameter family \(\{ T_t \}_{t \geq 0} \) of continuous linear operators in \(L(X) \) is a strongly continuous semigroup (or \(C_0 \)-semigroup) of operators in \(L(X) \) if \(T_0 = I, T_t T_s = T_{t+s} \) for all \(t, s \geq 0 \), and \(\lim_{t \to s} T_t x = T_s x \) for all \(s \geq 0, x \in X \).

Definition 7 A one-parameter semigroup \(\{ T_n \}_{n=1}^{\infty} \) in \(L(X) \) is nonwandering relative to \(E \) if \(E \) has hyperbolic structure: \(E = E_u \oplus E_s, T T^n E_s = E_s, T^n T E_u = E_u \), where \(E_u, E_s \) are closed subspaces. In addition, there exist constants \(\tau (0 < \tau < 1) \) and \(c > 0 \), such that for any \(x_u \in E_u, \| T^n x_u \| \geq c \tau^{-n} \| x_u \| \), and for any \(x_s \in E_s, \| T^n x_s \| \leq c \tau^n \| x_s \| \) for all \(n \in \mathbb{N} \); and if \(\text{per}(T^n) = E \), where \(\text{per}(T^n) \) be the set of all period points, i.e., if \(x \in \text{per}(T^n) \), there exists \(n_0 \in \mathbb{N} \) such that \(T^{n_0} x = x \).

Definition 8 A one-parameter semigroup \(\{ T_t \}_{t \geq 0} \) in \(L(X) \) is nonwandering relative to \(E \) if \(E \) has hyperbolic structure: \(E = E_u \oplus E_s, T T_e = E_s, T E_u = E_u \), where \(E_u, E_s \) are closed subspaces. In addition, there exist constants \(\tau (0 < \tau < 1) \) and \(c > 0 \), such that for any \(x_u \in E_u, \| T_t x_u \| \geq c \tau^{-t} \| x_u \| \), and for any \(x_s \in E_s, \| T_t x_s \| \leq c \tau^t \| x_s \| \) for all \(t \geq 0 \); and if \(\text{per}(T_t) = E \), where \(\text{per}(T_t) \) be the set of all period points, i.e., if \(x \in \text{per}(T_t) \), there exists \(t > 0 \) such that \(T_t x = x \).

IJNS homepage: http://www.nonlinearscience.org.uk/
3 Main results

From the definition of nonwandering discrete semigroup and nonwandering operator, we have the following theorem.

Theorem 3 The discrete semigroup \(\{T^n\}_{n=1}^{\infty} \) is nonwandering relative to \(E \) if and only if operator \(T \) is nonwandering relative to \(E \).

Theorem 4 Let \(\{T_t\}_{t \geq 0} \) be a strongly continuous semigroup (or \(C_0 \)-semigroup) of operators in \(L(X)_1 \) and \(E = E_u \oplus E_s, T_sE_s \oplus E_sT_sE_s = E_s, T_sE_u = E_u \) for all \(t \geq 0 \), where \(E_u, E_s \) are closed subspaces. Let operator \(T_t \) for any \(t > 0 \) in the semigroup is nonwandering, then the semigroup \(\{T_t\}_{t \geq 0} \) itself is nonwandering.

Proof. Without loss of generality, we may assume that \(t_0 = 1 \). Indeed, we can consider the semigroup \(\{T_t\}_{t \geq 0} \) in \(L(X)_1 \) with \(\bar{T}_t := T_{t_0} \) for every \(t \geq 0 \). Clearly, \(\bar{T}_1 := T_0 \).

Let \(\bar{T}_t \) be a non-wandering operator relative to \(E \); we have \(E \) has hyperbolic structure: \(E = E_u \oplus E_s, T_1 E_s = E_s, T_1 E_u = E_u \), where \(E_u, E_s \) are closed subspaces.

In addition, there exist constants \(\tau (0 < \tau < 1) \) and \(c > 0 \), such that for any \(x_u \in E_u, k \in N, \|T_t^k x_u\| \geq c \tau^{-k} \|x_u\| \), and for any \(x_s \in E_s, k \in N, \|T_t^k x_s\| \leq c \tau^k \|x_s\| \).

And \(\{T_t\} \) is dense in \(E \).

For any \(t \geq 0 \), we have \(t = t' + k \), where \(t' \in [0, 1], k \in N \).

So we firstly consider \(t \in [0, 1] \).

Since \(\lim_{t \to s} T_t x = T_s x \) for all \(s \geq 0, x \in X \), we have \(\lim_{t \to s} \|T_t\| = \|T_s\| \).

\(f(t) = \|T_t\| \) is continuous in \([0, +\infty)\). There exists constant \(M > 0 \) which satisfies \(\|T_t\| \leq M \), for any \(t \in [0, 1] \).

\[\|T_t x_u\| \leq \|T_t\| \|x_u\| \leq M \|x_u\| = M \frac{\tau}{\tau} \|x_u\| \leq c_1 \tau^t \|x_u\| , \]

where \(c_1 = \frac{M}{\tau} \).

\[\|T_{t+1}^t \| T_t x_u \| \geq \|T_{t+1}^t T_t x_u\| = \|T_t x_u\| \geq c \tau^{-1} \|x_u\| , \]

\[\|T_t x_u\| \geq c \tau^{-1} \|x_u\| \leq \|T_{t+1}^t\| \|x_u\| \geq c_2 \tau^{-t} \|x_u\| , \]

where \(c_2 = \frac{c}{\tau^t} \).

Next we consider \(t > 1 \), then \(t = t' + k \), where \(t' \in [0, 1], k \in N \), for any \(x_s \in E_s \)

\[\|T_t x_s\| = \|T_{t+1}^{t'} x_s\| \leq c \tau^{-k} \|T_{t'} x_s\| \leq c \tau^{-k} c_1 \tau^t \|x_s\| = c_3 \tau^t \|x_s\| \]

\[\|T_t x_u\| = \|T_{t+1}^{t'} x_u\| \geq c \tau^{-k} \|T_{t'} x_u\| \geq c \tau^{-k} c_2 \tau^{-t'} \|x_u\| = c_4 \tau^{-t} \|x_u\| \]

for any \(x_u \in E_u \), where \(c_3 = c c_1, c_4 = c c_2 \).

Let \(\epsilon' = \max \left\{ c_1, \frac{1}{c_2}, c_3, \frac{1}{c_4} \right\} \),

we have \(\|T_t x_u\| \geq \epsilon' \tau^{-t} \|x_u\| , \)

for any \(x_u \in E_u \) and \(\|T_t x_s\| \leq \epsilon' \tau^t \|x_s\| , \)

for any \(x_s \in E_s \), for all \(t \geq 0 \).

For all \(x \in per(T_1) = E \), there exist \(\{x_n\} \subset per(T_1) \) such that \(\lim_{n \to \infty} x_n = x \).
For all \(n \), there exist \(k_n \in \mathbb{N} \) such that
\[
T_{k_n}^{k_n} x_n = T_{k_n} x_n = x_n.
\]
Then for all \(n, x_n \in \text{per} \{ T_t \}_{t \geq 0} \). So \(x \in \overline{\text{per} \{ T_t \}_{t \geq 0}} \). By \(x \) is arbitrary, we have
\[
\overline{\text{per} \{ T_t \}_{t \geq 0}} = E.
\]
So \(\{ T_t \}_{t \geq 0} \) is nonwandering. ■

Remark 5 The converse situation is not affirmative. In \(C_0 \)-semigroup \(\{ T_t \}_{t \geq 0} \), we can not obtain \(\overline{\text{per} \{ T_{t_0} \}} = E \) (for any \(t_0 > 0 \)) from \(\overline{\text{per} \{ T_t \}_{t \geq 0}} = E \).

Example 1 : Let \(T_t x = xe^{it} \), \(\{ T_t \}_{t \geq 0} \) is a \(C_0 \)-semigroup. \(\overline{\text{per} \{ T_t \}_{t \geq 0}} = E \), but \(\text{per} \{ T_t \} = \phi \).

Acknowledgments

The authors would like to thank the referees for comments and suggestions. This work is supported by the Nature Science Foundation of the Jiangsu Higher Education Institutions of China (No. 09KJB110003) and the high-level talented person special subsidies of Jiangsu University (No. 05JDG047).

References

IJNS homepage: http://www.nonlinearscience.org.uk/