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Abstract: In this paper, we propose the theory of generalized anti-synchronization (GAS) of discrete chaot-
ic maps via linear transformations. We find the necessary and sufficient condition for generalized anti-
synchronization of chaotic maps via linear transformations. This synchronization method based on the sta-
bility criteria of linear system. This method does not require calculation of the Lyapunov exponents. Our
proposed method is able to find the functional relationship between the driving system and the driven system
after synchronization. We have taken 3D chaotic Hennon map as an example to discuss our proposed theory.
Finally, some numerical simulation results are presented to show the efficiency of our theory.
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1 Introduction
Experimental observations have pointed out that chaotic systems are common in nature. It is found that in Chemistry
(Belouov-Zhabotinski reaction), in Nonlinear Optics (lasers), in Electronics (Chua-Matsumoto circuits), in Fluid Dynam-
ics (Rayleigh-Benard convection), etc. chaotic systems exist. Chaos is found in meteorology, solar system, heart and
brain of living organisms and so on. Synchronization and control of interacting chaotic oscillators is one of the funda-
mental phenomena of nonlinear dynamics and chaos. Experimental realization of chaos synchronization and control have
been achieved with a magnetoelastic ribbon, a heart, a thermal convection loop, a diode oscillator, an optimal multimode
chaotic solid-state laser, a Belousov-Zhabotinski reaction diffusion chemical system, and many other experiments.

One of the most striking discoveries in the study of chaos is that chaotic systems can be made to synchronize with
each other. Synchronization of chaos is a phenomenon that may occur when two or more chaotic dynamical systems are
coupled. This was discovered by Pecora and Carroll in 1990 [1]. Since Pecora and Carroll’s [1] work many effective
methods namely, OGY method [2], adaptive control [3], differential geometric method [4], inverse optimal control [5],
active control [6], lag synchronization [7, 8], projective synchronization [9–11], spatiotemporal synchronization [12] etc.
for chaos control and synchronization have been proposed. Usually two dynamical systems are called synchronized if
the distance between their corresponding states converges to zero as time goes to infinity. This type of synchronization
is known as identical synchronization [1]. A generalization of the concept for unidirectionally coupled dynamical sys-
tems was proposed by Rulkov et. al.[13], where two systems are called synchronized if a static functional relationship
exists between the states of the systems. They called this kind of synchronization a generalized synchronization (GS).
Kocarev and Parlitz [14] formulated a condition for the occurrence of GS between two coupled continuous dynamical
systems. Yang and Chua [15] proposed GS of continuous dynamical systems via linear transformations. Tarai et.al.[16]
introduces synchronization between two generalized bidirectionally coupled chaotic system. The anti-synchronization is
a phenomenon that the state variables of synchronized systems have the same absolute values but opposite signs. We say
that anti-synchronization of two systems S1 and S2 are achieved if the following holds:
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limt→∞ |x1(t) + x2(t)| = 0

where x1(t), x2(t) are the state vectors of the systems S1 and S2 respectively. It was well known that the first observation
of synchronization of oscillators by Huygens in the seventeenth century was, in fact anti-synchronization(AS) between the
pendulum clocks. Kim et.al.[17] have observed anti-synchronization phenomena in coupled identical chaotic oscillators.
Zhang and Sun [18] have studied anti synchronization based on suitable separation technique. In 2005 Hu et.al.[19] have
observed adaptive control for anti synchronization of Chua’s chaotic system. Anti synchronization of colpitts oscillators
using active control was studied by Hui [20]. An observer based anti synchronization was investigated by Li et.al. [21]. In
2008, Li et.al. [22] have investigated anti-synchronization of two different chaotic systems. Recently Sawalha et.al. [23]
have studied anti synchronization of two hyperchaotic systems via nonlinear control.

In this paper, we propose the theory of GAS of discrete chaotic maps via linear transformations. We also find the
necessary and sufficient conditions for GAS of chaotic maps via linear transformation. We have taken 3D chaotic Hennon
map as an example to discuss our proposed theory. Finally some numerical simulation results are presented to show the
efficiency of our proposed method.

2 Generalized anti-synchronization via linear transformation

Any discrete dynamical system can be decomposed into two parts

X(k + 1) = AX(k) + Ψ(X(k)) (1)

where X = (x1, x2, x3, .....xn)
T , A is an n × n constant matrix and Ψ : Rn → Rn function. We assume that driving

system transmit the signal Ψ(x) to the driven system through the following unidirectional coupling scheme:

X(k + 1) = AX(k) + Ψ(X(k))

Y (k + 1) = AY (k)− ΛΨ(X(k)) (2)

where Λ is n × n matrix. Notice that the matrix Λ may be a time dependent matrix, not necessarily a constant matrix.
Theorem If the matrix Λ commutes with A then two dynamical systems are in a state of generalized anti-synchronization
(GAS) via linear transformation

Y(∞) = H(x) = −ΛX

if and only if A has spectral radius less than 1. i.e, if all eigen values of the matrix A has modulus less than 1.

Proof. Let Z(k) = Y (k)+ΛX(k), be the generalized anti-synchronization error. Then we have the following dynamical
system for the error

Z(k + 1) = Y (k + 1) + ΛX(k + 1)

= AY (k)− ΛΨ(X(k)) + ΛAX(k) + ΛΨ(X(k))

= A(Y (k) + ΛX(k))

= AZ(k). (3)

Therefore limk→∞Z(k) = 0 if and only if all eigen values (real or complex) of the matrix A having modulus less than
1. Therefore the matrix A can be taken as any real matrix with all eigen values having modulus less than 1. So there are
infinite ways to choose the matrix A.
The matrices X which commute with n× n matrices which satisfies the following equation:

AX = XA. (4)

Clearly the above equation has infinite number of solutions; therefore we can construct several methods of linear general-
ized anti-synchronization between two chaotic systems.
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3 Generalized anti-synchronization of generalized Hennon map
In this section, we discuss the GAS of two discrete time chaotic generalized Hennon map via linear transformation. We
consider the following 3D Hennon map

x1(k + 1) = −bx3(k)

x2(k + 1) = bx3(k) + x1(k)

x3(k + 1) = 1 + x2(k)− ax2
3(k) (5)

where a and b are parameters. For a = 1.07 and b = 0.3, the Hennon map displays chaotic behavior. The Hennon map
can be decomposed into two parts as

X(k + 1) = AX(k) + Ψ(X(k)) (6)

in many ways. Here we consider the two types of decomposition. Firstly we consider

A =

 α1 0 0
0 α2 0
0 0 α3

 (7)

where X(k) = (x1, x2, x3)
T and Ψ(X) = [−α1x1(k) − bx3(k), x1(k) − α2x2(k) + bx3(k), 1 + x2(k) − α3x3(k) −

ax2
3(k)]

T . Clearly the matrix A has eigenvalues which are all less than 1 in modulus if and only if α1 < 1, α2 < 1 and
α3 < 1. Lastly we take

A =

 α1 0 −b
0 α2 b
0 0 α3

 (8)

where X(k) = (x1, x2, x3)
T and Ψ(X) = [−α1x1(k), x1(k)− α2x2(k), 1 + x2(k)− α3x3(k)− ax2

3(k)]
T . Clearly the

matrix A has eigenvalues which are all less than 1 in Modulus also, if and only if α1 < 1, α2 < 1 and α3 < 1. Now the
driven Hennon map can be taken as

Y (k + 1) = AY (k)− ΛΨ(X(k)) (9)

where the matrix Λ commutes with A. Therefore the driving Hennon map and the driven Hennon map will anti-
synchronize in the generalized sense.

4 Results and Discussions
We did the numerical simulation of the generalized Hennon map taking random initial conditions for both driving and
driven system. First two simulations have done for decomposition of the Hennon map as in equation (7) and rest three
simulations are done using decomposition of the Hennon map as in equation (8).

Simulation 1
In this simulation, we take

Λ =

 λ 0 0
0 λ 0
0 0 λ

 (10)

where λ is real. Obviously the sufficient condition for GAS, ΛA = AΛ is satisfied. Here the driving Hennon map is given
by (5) and the driven Hennon map is given by

y1(k + 1) = α1y1(k) + λ(α1x1(k) + bx3(k))

y2(k + 1) = α2y2(k)− λ(bx3(k) + x1(k)− α2x2(k))

y3(k + 1) = α3y3(k)− λ(1 + x2(k)− α3x3(k)− ax2
3(k)) (11)
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Figure 1: Time evaluation of generalized anti-synchronization errors e1(t), e2(t) and e3(t) are shown for α1 = 0.9, α2 =
0.8 and α3 = 0.75 for simulation 1.

In this case, we define GAS error as

e1(k) = y1(k) +
1

2
x1(k)

e2(k) = y2(k) +
1

2
x2(k)

e3(k) = y3(k) +
1

2
x3(k) (12)

Taking α1 = 0.9, α2 = 0.8 and α3 = 0.75 and for λ = 0.5 the time evaluation of generalized anti-synchronization errors
e1(t), e2(t) and e3(t) is shown in Fig.1. It is obvious from the Fig.1. that anti-synchronization between the systems (5)
and (11) is happening. Here the state variable of the driving system and the driven system are connected by the linear
transformation

y1(k) +
1

2
x1(k) = 0

y2(k) +
1

2
x2(k) = 0

y3(k) +
1

2
x3(k) = 0 (13)

Simulation 2
In this simulation, we take

Λ =

 λ1 0 0
0 λ2 0
0 0 λ3

 (14)
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Figure 2: Time evaluation of generalized anti-synchronization errors e1(t), e2(t) and e3(t) are shown for α1 =
−0.85, α2 = 0.75 and α3 = 0.95 for simulation 2.

where λ1, λ2, λ3 are all real. In this case the driven system are given by

y1(k + 1) = α1y1(k) + λ1(α1x1(k) + bx3(k))

y2(k + 1) = α2y2(k)− λ2(bx3(k) + x1(k)− α2x2(k))

y3(k + 1) = α3y3(k)− λ3(1 + x2(k)− α3x3(k)− ax2
3(k)) (15)

In this case, we define GAS error as

e1(k) = y1(k) + x1(k)

e2(k) = y2(k) + 2x2(k)

e3(k) = y3(k) + 3x3(k) (16)

Taking α1 = −0.85, α2 = 0.75 and α3 = 0.95 and for λ1 = 1, λ2 = 2 and λ3 = 3, the effectiveness of the proposed
scheme is shown in Fig.2, by drawing the time evaluation of GAS errors e1(t), e2(t) and e3(t).
Here the state variable of the driving system and the driven system are connected by the linear transformation

y1(k) + x1(k) = 0

y2(k) + 2x2(k) = 0

y3(k) + 3x3(k) = 0 (17)

Simulation 3
In this simulation, we take

Λ =

 λ 0 0
0 λ 0
0 0 λ

 (18)

IJNS email for contribution: editor@nonlinearscience.org.uk



D. Maity et al: A Generalized Anti-synchronization of Discrete Chaotic Maps via Linear Transformations 49

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60

A
nt

i-S
yn

ch
ro

ni
za

tio
n 

E
rr

or

Time

Fig.3

Figure 3: Time evaluation of generalized anti-synchronization errors e1(t), e2(t) and e3(t) are shown for α1 = −0.5, α2 =
0.95 and α3 = −0.70 for simulation 3.

where λ is real. In this case the driven system are given by

y1(k + 1) = α1y1(k)− by3(k)− λα1x1(k)

y2(k + 1) = α2y2(k) + by3(k)− λ(x1(k)− α2x2(k))

y3(k + 1) = α3y3(k)− λ(1 + x2(k)− α3x3(k)− ax2
3(k)) (19)

In this case, we define GAS error as

e1(k) = y1(k) + 2x1(k)

e2(k) = y2(k) + 2x2(k)

e3(k) = y3(k) + 2x3(k) (20)

Taking α1 = −0.5, α2 = 0.95 and α3 = −0.70 and for λ = 2, the successfulness of our method is shown in Fig.3. For
the state variable of the driving system and the driven system are connected by the linear transformation

y1(k) + 2x1(k) = 0

y2(k) + 2x2(k) = 0

y3(k) + 2x3(k) = 0 (21)

Simulation 4
In this simulation, we take

Λ = A =

 α1 0 −b
0 α2 b
0 0 α3

 (22)

In this case the driven Hennon system are given by

y1(k + 1) = α1y1(k)− by3(k)− α2
1x1(k) + b(1 + x2(k)− α3x3(k)− ax2

3(k))

y2(k + 1) = α2y2(k) + by3(k)− α2(x1(k)− α2x2(k))− b(1 + x2(k)− α3x3(k)− ax2
3(k))

y3(k + 1) = α3y3(k)− α3(1 + x2(k)− α3x3(k)− ax2
3(k)) (23)
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Figure 4: Time evaluation of generalized anti-synchronization errors e1(t), e2(t) and e3(t) are shown for α1 = 0.85, α2 =
0.75 and α3 = −0.95 for simulation 4.

The GAS error can be expressed as

e1(k) = y1(k) + α1x1(k)− bx3(k)

e2(k) = y2(k) + α2x2(k) + bx3(k)

e3(k) = y3(k) + α3x3(k) (24)

Taking α1 = 0.85, α2 = 0.75 and α3 = −0.95 and for λ = 2, the time evaluation of GAS errors e1(t), e2(t) and e3(t)
are shown in Fig.4. In this case the state variables of the driving system and driven system are connected by the linear
transformation

y1(k) + α1x1(k)− bx3(k) = 0

y2(k) + α2x2(k) + bx3(k) = 0

y3(k) + α3x3(k) = 0 (25)

Simulation 5
In this simulation, we take

Λ = A−1 =

 1
α1

0 b
α1α3

0 1
α2

− b
α2α3

0 0 1
α3

 (26)

For the above choice of matrix, the driven driven Hennon system are given by

y1(k + 1) = α1y1(k)− by3(k) + x1(k)−
b

α1α3
(1 + x2(k)− α3x3(k)− ax2

3(k))

y2(k + 1) = α2y2(k) + by3(k)−
1

α2
(x1(k)− α2x2(k)) +

b

α2α3
(1 + x2(k)− α3x3(k)− ax2

3(k))

y3(k + 1) = α3y3(k)−
1

α3
(1 + x2(k)− α3x3(k)− ax2

3(k)) (27)
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Figure 5: Time evaluation of generalized anti-synchronization errors e1(t), e2(t) and e3(t) are shown for α1 = 0.90, α2 =
0.90 and α3 = −0.95 for simulation 5.

For Simulation 5, we define GAS error as

e1(k) = y1(k) +
1

α1
x1(k) +

b

α1α3
x3(k)

e2(k) = y2(k) +
1

α2
x2(k)−

b

α2α3
bx3(k)

e3(k) = y3(k) +
1

α3
x3(k) (28)

The time evaluation of GAS errors e1(t), e2(t) and e3(t) for system of Eq. (28) are shown in Fig.5. The state variables
of the driving system and the driven system are connected by the linear transformation

y1(k) +
1

α 1
x1(k) +

b

α1α3
x3(k) = 0

y2(k) +
1

α2
x2(k)−

b

α2α3
x3(k) = 0

y3(k) +
1

α3
x3(k) = 0 (29)

5 Conclusions
A generalized approach for constructing chaotically anti-synchronized discrete dynamical systems via linear transforma-
tion is proposed in this paper. The proposed method is simpler than the conventional methods because here we need
not require calculation of the Lyapunov exponents. In our method the functional relationship between the states of the
driving system and the driven system can be determined. Therefore knowing the driving system the behavior of the driven
system can be predicted in advance here. If the matrix associated with the linear transformation is invertible then from
the behavior of the driven system it is possible to predict the behavior of the driving system. This synchronization scheme
may be used for sending secret message for the purpose of communications. For the communication purpose our goal is
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to send secretes information of the driving system to the driven system. Our method proposes a rule by which one can
construct a response system which will anti-synchronized with the driving system. For communication purpose GAS is
more effectively secret because for the outsiders who want to extract information transmitted by the driving system, apart
from knowing the mechanism of synchronization, become very difficult. A hacker has to know another code the functional
relationship between the variables of the drive and response system. In GAS there exist infinite ways to choose the secret
key. Therefore, the techniques based on GAS is seemed to be more practical in secrete communication application.
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