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Abstract: In this paper, the global synchronization problem for a class of complex dynamical networks
with internal delay and distributed-delay coupling is investigated via aperiodically intermittent control. The
network topology is assumed to be directed. Based on the reduction to absurdity and mathematical induction
method, some sufficient conditions to guarantee global synchronization are derived analytically. Different
from previous works, the control type here is aperiodic intermittent with changeable control period, which
expands the scope of practical applications of intermittent control strategy. Finally, a numerical example is
provided to demonstrate the effectiveness of the theoretical results.
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1 Introduction

Over the past decades, much effort has been devoted to the study of complex dynamical networks, which consist of a large
set of interacting dynamical nodes connected by links. The main reason is that many real-world systems can be modeled
as complex dynamical networks, such as ecosystems, neural networks, biomolecular networks, and social networks [1–
3]. As a typical collective behavior, synchronization, which means that all dynamical nodes in a complex dynamical
network achieve a common behavior, has become a hot research topic in various fields of science and engineering [4, 5].
This is partly due to its wide potential applications in many areas, including secure communication [6], parallel image
processing [7], and pattern recognition [8]. Hitherto, several different synchronization patterns have been introduced and
intensively investigated, such as complete synchronization [5], phase synchronization [9], generalized synchronization
[10], and cluster synchronization [11].

In practical applications, it is usually expected that complex dynamical networks could realize synchronization or
synchronize with a given trajectory by themselves. In the real world, however, due to the existence of weak coupling
or heterogeneity [12], it is very hard for complex dynamical networks to achieve the objective automatically. In view of
this fact, many effective control methods including state feedback control [13], adaptive control [14], impulsive control
[15], and intermittent control [16], have been proposed to force the states of all dynamical nodes in a complex dynamical
network into a desired objective trajectory. Intermittent control as a discontinuous control technique has been widely used
in engineering fields for its practical and easy implementation in engineering control [16, 17]. In the implementation of
intermittent control, the control is activated only during a sequence of disjoint nonzero time intervals [17]. Hence, in
comparison with continuous feedback control such as state feedback control and adaptive control [13, 14], intermittent
control can decrease the control cost and reduce the amount of information transmission.

Recently, a periodically intermittent control scheme (i.e., the control time of the control scheme is periodic, and in each
period, the time is composed of work time and rest time [17]) has been adopted to investigate the synchronization problem
for chaotic systems as well as complex dynamical networks, see [16–25] and references therein. For instance, the lag
synchronization problem is explored for a class of neural networks with mixed delays via periodically intermittent control
in [20]. In [22], the exponential synchronization problem for a class of complex networks with finite distributed delays
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coupling was considered via periodically intermittent control. In [16], the pinning synchronization problem for complex
dynamical networks with or without time delays was analyzed via periodically intermittent control. In [24, 25], Liu et
al. and Cai et al. investigated the cluster synchronization problem for complex dynamical networks under periodically
intermittent pinning control.

However, the requirement of periodicity of intermittent control strategy in previous works [16–25], i.e., each control
period is fixed (or equal to each other), is unreasonable. For instance, the generation of wind power in smart grid relies on
the real world, which is obviously aperiodically intermittent [26, 27]. In addition, in practical applications, each control
period of intermittent control strategy is needed to be changeable and therefore adjusted in accordance to actual situations.
Therefore, it is significant and of prime importance to consider the synchronization problem for complex dynamical
networks via aperiodically (or nonperiodically) intermittent control. Unfortunately, few results have been reported on this
issue. In [26], aperiodically intermittent pinning control for the exponential synchronization of linearly coupled networks
with delayed dynamical nodes was studied. In [27], the quasi-synchronization of nonlinear coupled networks with delayed
dynamical nodes and parameter mismatches by using aperiodically intermittent pinning control was discussed.

Time delay is a very familiar phenomenon in various systems [16–25, 28–30]. Owing to the finite speeds of informa-
tion transmission and processing, a signal traveling through a dynamical network usually is associated with time delay
[16, 22–25, 28–30]. Hence, it is imperative to investigate the effect of time delay on synchronization of complex dynam-
ical networks. In general, there exist two types of time delays in dynamical networks. One is internal delay occurring
inside each individual dynamical node, i.e., each network node is a delayed dynamical system [28]. The other is coupling
delay caused by the information exchange among network nodes [28]. Thus, realistic modeling of complex dynamical
networks requires both the internal delay and coupling delay to be taken into account. Note that many real-world networks
such as biological neural networks, metabolic pathways and ecosystems, normally have a long spatial distance between
two coupled cells or network nodes, thus there will be a distribution of conduction velocities along these connected paths
[22, 29, 30]. Accordingly, to better describe the coupling delay in a complex dynamical network, a more satisfactory way
is to incorporate distributed delay. In view of these facts, in this paper we will study the synchronization problem for
complex dynamical networks with internal delay and distributed-delay coupling via aperiodically intermittent control. To
the best of our knowledge, there is still no theoretical result concerning this problem.

Motivated by the above analysis, this paper is concerned with global synchronization of a class of complex dynamical
networks with internal delay and distributed-delay coupling via aperiodically intermittent control. Some sufficient condi-
tions to guarantee global synchronization are derived by utilizing the reduction to absurdity and mathematical induction
method. It is noted that the control type here is aperiodically intermittent, which takes the periodically intermittent control
proposed in previous works as a special case. Additionally, the coupling matrix can be asymmetric and reducible. Finally,
a numerical example is given to demonstrate the effectiveness of the proposed control method.

2 Problem formulation and preliminaries

Consider a general complex network consisting of N identical delayed dynamical nodes with distributed-delay coupling,
which is described by [22]:

ẋi(t) = f (t, xi(t), xi(t − σ(t))) + c
N∑

j=1, j,i

bi jΓ
( ∫ t

t−τ
ρ(t − s)x j(s) ds − xi(t)

)
, (1)

where i ∈ T = {1, 2, · · · ,N}, xi(t) = (xi1(t), xi2(t), · · · , xin(t))> ∈ Rn is the state variable of node i, f : R+ × Rn × Rn →

Rn is a continuous vector-valued function describing the dynamics of each isolated (uncoupled) node. The time delay
σ(t) is bounded satisfying 0 ≤ σ(t) ≤ σ, which denotes the internal delay occurring inside the dynamical node [28].
ρ(t) is a real-valued nonnegative bounded function defined on [0, τ], which reflects the influence of the past states on
the current dynamics [20]. The positive constant c > 0 is the coupling strength, Γ = (γi j)n×n is the inner connecting
matrix describing the individual coupling between nodes, B =

(
bi j

)
N×N is the coupling matrix representing the network’s

topological structure, in which bi j is defined as follows: if there is a directed link from node j to node i ( j , i), then bi j > 0;
otherwise, bi j = 0. This implies that the network is directed and the coupling matrix B is asymmetric. Additionally, the
diagonal elements of matrix B are defined by bii = −

∑N
j=1, j,i bi j, i ∈ T, and thus one has

∑N
j=1 bi j = 0, i ∈ T. The initial

conditions of the network (1) are given by xi(s) = φi(s) ∈ C([−τ∗, 0],Rn), i ∈ T, where C([−τ∗, 0],Rn) denotes the set of
all n−dimensional continuous functions defined on [−τ∗, 0] with τ∗ = max{σ, τ}.
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In the case that the network (1) reaches synchronization, i.e., lim
t→+∞

||xi(t) − π(t)|| = 0, i ∈ T, due to the fact that

bii = −
∑N

j=1, j,i bi j, i ∈ T, then π(t) satisfies the following dynamic equation:

π̇(t) = f (t, π(t), π(t − σ(t))) − cbiiΓ
( ∫ t

t−τ
ρ(t − s)π(s) ds − π(t)

)
, i ∈ T. (2)

Here, π(t) is called the synchronous state. Evidently, the synchronous state π(t) is uniform for all i ∈ T. Therefore, similar
to [22, 23, 28], the assumption that b11 = b22 = · · · = bNN = −a < 0 is imposed for realizing the synchronization. In
practice, the coupling matrix B can be chosen as follows [23]: B = aG̃ with G̃ =

(
g̃i j

)
N×N =

(
gi j/

(∑
j=1, j,i gi j

))
N×N , where

G =
(
gi j

)
N×N be any square matrix satisfying gi j ≥ 0 (i , j) and gii = −

∑N
j=1, j,i gi j , 0, i ∈ T. In this situation, it is

easy to see that the diagonal elements of B are all equal to −a satisfying the above assumption. Accordingly, the dynamic
equation for π(t) becomes the following form:

π̇(t) = f (t, π(t), π(t − σ(t))) + acΓ
( ∫ t

t−τ
ρ(t − s)π(s) ds − π(t)

)
. (3)

In this paper, our main aim is to design some proper controllers such that the states of all nodes xi(t), i ∈ T in the
network (1) will be globally asymptotically synchronized with the synchronous state π(t), i.e.,

lim
t→+∞

||xi(t) − π(t)|| = 0, i ∈ T. (4)

In order to achieve the synchronization objective (4), we introduce intermittent control strategy to nodes in the network
(1). Accordingly, the controlled delayed dynamical network is given by:

ẋi(t) = f (t, xi(t), xi(t − σ(t))) + c
N∑

j=1, j,i

bi jΓ
( ∫ t

t−τ
ρ(t − s)x j(s) ds − xi(t)

)
+ ui(t), (5)

where i ∈ T and the control input ui(t) is an intermittent controller designed as

ui(t) = −di(t)(xi(t) − π(t)), i ∈ T. (6)

in which di(t) is the intermittent feedback control gain described dy

di(t) =

{
d, tm ≤ t < tm + δm,
0, tm + δm ≤ t < tm+1,

(7)

where m ∈ Z+={1, 2, · · · }, the control time sequence {tm}+∞m=1 satisfies 0 = t1 < t2 < · · · < tm < · · · and limm→+∞ tm = +∞,
d > 0 is a positive constant called control gain. The time span [tm, tm+1) is the time of the mth period, and tm+1−tm is called
the mth control period; [tm, tm + δm) is the mth work time, and δm > 0 is called the mth control width (control duration);
[tm + δm, tm+1) is the mth rest time, and (tm+1 − tm) − δm > 0 is called the mth rest width (rest duration).

Remark 1 It can be observed that the control time of the controller (6) is aperiodic, and each control period [tm, tm+1) is
composed of “work time [tm, tm + δm)” and “rest time [tm + δm, tm+1)”. The controller is imposed to the network during the
work time, but it is removed during the rest time. This kind of control strategy is called aperiodically (or nonperiodically)
intermittent control [26]. Obviously, the above requirement of tm and δm has a large scope. Especially, when tm+1− tm ≡ T
and δm ≡ δ, m ∈ Z+, the intermittent control type becomes the periodic one, which has been widely adopted in recent
years (see [16–25] and the references therein).

To derive the main results, the following assumptions are needed.
(A1) (see [12]) For the vector-valued function f (t, x(t), x(t −σ(t))), there exist a constant L1 and a positive constant L2

such that[
x(t) − y(t)

]>[ f (t, x(t), x(t − σ(t))) − f (t, y(t), y(t − σ(t)))
]
≤ L1

[
x(t) − y(t)

]>[x(t) − y(t)
]

+L2
[
x(t − σ(t)) − y(t − σ(t))

]>[x(t − σ(t)) − y(t − σ(t))
]

for any x(t), y(t) ∈ Rn.
(A2) (see [22]) The kernel function ρ : [0, τ]→ [0,+∞) is a real-valued nonnegative continuous function and satisfies∫ τ

0
ρ(s)ds = 1.

IJNS homepage: http://www.nonlinearscience.org.uk/



172 International Journal of Nonlinear Science,Vol.26(2018),No.3,pp. 169-179

Remark 2 In fact, there are many functions satisfying (A2), such as ρ(t) = (1/τ), ρ(t) = exp{−t}/(1 − exp{−τ}) and
ρ(t) = (2/τ2)(τ − t) for t ∈ [0, τ].

3 Main results

In this section, we discuss global synchronization of the delayed dynamical network (1) under the aperiodic intermittent
controller (6). Based on the reduction to absurdity and mathematical induction method, some sufficient conditions to
guarantee the global synchronization will be derived.

For convenience, let T0 = T̂0 = t1, Tm = tm+1−tm, T̂m =
∑m

j=0 T j, and θm = δm/Tm, m ∈ Z+, where θm is called the mth
control rate. Then, we get tm = T̂m−1 and δm = θmTm, m ∈ Z+. Define error variables as ei(t) = xi(t) − π(t), i ∈ T, then from
(3) and (5)-(7), we can derive the following error dynamical system:

ėi(t) = f̃ (t, xi, π, xσi , π
σ) + c

N∑
j=1, j,i

bi jΓ
( ∫ t

t−τ
ρ(t − s)e j(s) ds − ei(t)

)
− dei(t), T̂k ≤ t < T̂k + θk+1Tk+1,

ėi(t) = f̃ (t, xi, π, xσi , π
σ) + c

N∑
j=1, j,i

bi jΓ
( ∫ t

t−τ
ρ(t − s)e j(s) ds − ei(t)

)
, T̂k + θk+1Tk+1 ≤ t < T̂k+1,

(8)

where i ∈ T, f̃ (t, xi, π, xσi , π
σ) = f (t, xi(t), xi(t − σ(t))) − f (t, π(t), π(t − σ(t))), and k = 0, 1, 2, · · · . Clearly, if the error

variables satisfy lim
t→+∞

||ei(t)|| = 0, i ∈ T, then the controlled delayed dynamical network (5) can realize global synchro-
nization.

Theorem 1 Suppose that all the rest widths (Tm − δm), m ∈ Z+, are bounded, then the controlled delayed dynamical
network (5) can realize global synchronization if there exists a positive constant η1 > q such that the following conditions
hold:

(i) 0 < (p + η1) ≤ 2d, (ii) lim
k→+∞

[
− ε

( k∑
j=0

T j

)
+ (η1 + p)

( k∑
j=0

(1 − θ j)T j

)]
= −∞,

where p = 2L1 + acλmax
(
ΓΓ> − (Γ + Γ>)

)
, q = 2L2 + ac, and ε > 0 is the unique positive solution of the equation

ε − η1 + 2L2exp{εσ} + ac exp{ετ} = 0.

Proof. Let Vi(t) =
1
2

e>i (t)ei(t), i ∈ T, then when T̂k ≤ t < T̂k + θk+1Tk+1, k = 0, 1, 2, · · · , using (A1)-(A2) and Lemma 1,
the time derivative of Vi(t) along the trajectories of (8) can be calculated as follows:

V̇i(t) = e>i (t)
[

f̃ (t, xi, π, xσi , π
σ) + c

N∑
j=1, j,i

bi jΓ
( ∫ t

t−τ
ρ(t − s)e j(s) ds − ei(t)

)
− dei(t)

]

= e>i (t) f̃ (t, xi, π, xσi , π
σ) + c

N∑
j=1, j,i

bi j

∫ t

t−τ
ρ(t − s)e>i (t)Γe j(s) ds − c

N∑
j=1, j,i

bi je>i (t)Γei(t) − de>i (t)ei(t)

≤ L1e>i (t)ei(t) + L2e>i (t − σ(t))ei(t − σ(t)) − ace>i (t)Γei(t) − 2dVi(t) +
c
2

N∑
j=1, j,i

bi j

∫ t

t−τ
ρ(t − s)

(
e>i (t)ΓΓ>ei(t) + e>j (s)e j(s)

)
ds

= (2L1 − 2d)Vi(t) + 2L2Vi(t − σ(t)) +
ac
2

e>i (t)
(
ΓΓ> − (Γ + Γ>)

)
ei(t) +

c
2

N∑
j=1, j,i

bi j

∫ τ

0
ρ(u)e j(t − u)>e j(t − u) du

≤ (2L1 − 2d)Vi(t) + 2L2Vi(t − σ(t)) +
ac
2
λmax

(
ΓΓ> − (Γ + Γ>)

)
e>i (t)ei(t) + c

N∑
j=1, j,i

bi j

∫ τ

0
ρ(u)V j(t − u) du

=
(
p − 2d

)
Vi(t) + 2L2Vi(t − σ(t)) + c

N∑
j=1, j,i

bi j

∫ τ

0
ρ(u)V j(t − u) du

=
(
p + η1 − 2d

)
Vi(t) − η1Vi(t) + 2L2Vi(t − σ(t)) + c

N∑
j=1, j,i

bi j

∫ τ

0
ρ(u)V j(t − u) du. (9)
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It follows from condition (i) that when T̂k ≤ t < T̂k + θk+1Tk+1, k = 0, 1, 2, · · · ,

V̇i(t) ≤ −η1Vi(t) + 2L2Vi(t − σ(t)) + c
N∑

j=1, j,i

bi j

∫ τ

0
ρ(u)V j(t − u) du, i ∈ T. (10)

Similarly when T̂k + θk+1Tk+1 ≤ t < T̂k+1, k = 0, 1, 2, · · · , we can obtain

V̇i(t) = e>i (t)
[

f̃ (t, xi, π, xσi , π
σ) + c

N∑
j=1, j,i

bi jΓ
( ∫ t

t−τ
ρ(t − s)e j(s) ds − ei(t)

)]

≤
(
2L1 + acλmax

(
ΓΓ> − (Γ + Γ>)

))
Vi(t) + 2L2Vi(t − σ(t)) + c

N∑
j=1, j,i

bi j

∫ τ

0
ρ(u)V j(t − u) du.

= pVi(t) + 2L2Vi(t − σ(t)) + c
N∑

j=1, j,i

bi j

∫ τ

0
ρ(u)V j(t − u) du, i ∈ T. (11)

In the following, using (10), (11) and condition (ii), we prove that lim
t→+∞

Vi(t) = 0, for all i ∈ T.

Denote ψ(z) = z − η1 + 2L2exp{zσ} + ac exp{zτ}. Since η1 > q > 0, we get ψ(0) < 0, ψ(+∞) > 0, and ψ ′(z) > 0.
According to the continuity and the monotonicity of ψ(z), the equation ψ(z) = z− η1 + 2L2exp{zσ}+ ac exp{zτ} = 0 has an
unique positive solution ε > 0. Take M0=sup−τ∗≤s≤0

{
maxi ∈T Vi(s)

}
, Qi(t) = exp{εt}Vi(t), where t ≥ −τ∗ and i ∈ T. Let

Wi(t) = Qi(t) − hM0, where h > 1 is a constant and i ∈ T. Note that T̂0 = 0, then it is easy to see that

Wi(t) < 0, for all t ∈ [−τ∗, T̂0] and i ∈ T. (12)

Next, we prove that

Wi(t) < 0, for all t ∈ [T̂0, θ1T1) and i ∈ T. (13)

We utilize the reduction to absurdity. Otherwise, by (12), there exist a ` ∈ T and t∗ ∈ [T̂0, θ1T1) such that

W`(t∗) = 0, Ẇ`(t∗) ≥ 0, W j(t∗) ≤ 0, ∀ j ∈ T \{`}, (14)

and for all i ∈ T

Wi(t) < 0, −τ∗ ≤ t < t∗. (15)

Using (10), we obtain

Ẇ`(t∗) = εQ`(t∗) + exp{εt∗}V̇`(t∗)

≤ εQ`(t∗) − η1Q`(t∗) + 2L2exp{εt∗}V`(t∗ − σ(t∗)) + c
N∑

j=1, j,`

b` j

∫ τ

0
ρ(u)exp{εt∗}V j(t∗ − u) du. (16)

From (14) and (15), we can get that Q`(t∗) = hM0, Q`(t) < hM0, −τ∗ ≤ t < t∗, and for all j ∈ T \{`} Q j(t) ≤ hM0, −τ∗

≤ t ≤ t∗.
This means that V`(t∗) = hM0exp{−εt∗}, V`(t) < hM0exp{−εt}, −τ∗ ≤ t < t∗, and for all j ∈ T \{`} V j(t) ≤ hM0exp{−εt},

−τ∗ ≤ t ≤ t∗. Hence, exp{εt∗}V`(t∗ − σ(t∗)) < exp{εσ}hM0 = exp{εσ}Q`(t∗) and exp{εt∗}
(

sup
t∗−τ≤s≤t∗

V j(s)
)
≤ exp{ετ}hM0 =

exp{ετ}Q`(t∗), ∀ j ∈ T \{`}.
According to (A2), it follows that

Ẇ`(t∗) <
(
ε − η1 + 2L2exp{εσ}

)
Q`(t∗) + cexp{ετ}Q`(t∗)

N∑
j=1, j,`

b` j

∫ τ

0
ρ(u) du

=
(
ε − η1 + 2L2exp{εσ} + ac exp{ετ}

)
Q`(t∗) = 0. (17)
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This contradicts the second inequality in (14), which shows that (13) holds. Together with (12), we can obtain that

Vi(t) < hM0exp{−εt}, for all t ∈ [−τ∗, θ1T1) and i ∈ T. (18)

Denote % = p + η1. Now, we prove that

Hi(t) = Qi(t) − hM0exp
{
% (t − θ1T1)

}
< 0, for all t ∈ [θ1T1, T̂1) and i ∈ T. (19)

Otherwise, there exist a ` ∈ T and t∗∗ ∈ [θ1T1, T̂1) such that

H`(t∗∗) = 0, Ḣ`(t∗∗) ≥ 0, H j(t∗∗) ≤ 0, ∀ j ∈ T \{`}, (20)

and for all i ∈ T

Hi(t) < 0, θ1T1 ≤ t < t∗∗. (21)

For σ(t∗∗) > 0, if θ1T1 ≤ t∗∗ − σ(t∗∗) < t∗∗, it follows from (20) and (21) that

exp{εt∗∗}V`
(
t∗∗ − σ(t∗∗)

)
< exp{εσ}hM0exp

{
% (t∗∗ − θ1T1)

}
= exp{εσ}Q`(t∗∗)

and if −τ∗ ≤ t∗∗ − σ(t∗∗) < θ1T1, it follows from (18) and (20) that

exp{εt∗∗}V`
(
t∗∗ − σ(t∗∗)

)
< exp{εσ}hM0 ≤ exp{εσ}Q`(t∗∗).

Therefore, we always have

exp{εt∗∗}V`
(
t∗∗ − σ(t∗∗)

)
< exp{εσ}Q`(t∗∗), for σ(t∗∗) > 0.

Similarly, with the same analysis, we can derive that

exp{εt∗∗}
(

sup
t∗∗−τ≤s≤t∗∗

V j(s)
)
≤ exp{ετ}Q`(t∗∗), ∀ j ∈ T \{`}.

Hence, using (11), we get

Ḣ`(t∗∗) = εQ`(t∗∗) + exp{ε t∗∗}V̇`(t∗∗) − %hM0exp
{
%(t∗∗ − θ1T1)

}
≤ εQ`(t∗∗) + pQ`(t∗∗) − %Q`(t∗∗) + 2L2exp{εt∗∗}V`

(
t∗∗ − σ(t∗∗)

)
+ c

N∑
j=1, j,`

b` j

∫ τ

0
ρ(u)exp{εt∗∗}V j(t∗∗ − u) du

<
(
ε + p − % + 2L2exp{εσ} + ac exp{ετ}

)
Q`(t∗) = 0,

which contradicts the second inequality in (20). Therefore (19) holds, i.e., for all t ∈ [θ1T1, T̂1) and i ∈ T,

Qi(t) < hM0exp
{
% (t − θ1T1)

}
≤ hM0exp

{
% (1 − θ1)T1

}
.

Combining with inequalities (12) and (13), we get

Qi(t) < hM0exp
{
% (1 − θ1)T1

}
, for all t ∈ [−τ∗, T̂1) and i ∈ T.

Similar to the proofs of (13) and (19), we can prove that

Qi(t) < hM0exp
{
% (1 − θ1)T1

}
, for all t ∈ [T̂1, T̂1 + θ2T2) and i ∈ T

and

Qi(t) < hM0exp
{
%(1 − θ1)T1

}
exp

{
%(t − T̂1 − θ2T2)

}
= hM0exp

{
%
(
t − (θ1T1 + θ2T2)

)}
, for all t ∈ [T̂1 + θ2T2, T̂2) and i ∈ T.

By mathematical induction, we can derive the following estimation of Qi(t) for any nonnegative integer k and i ∈ T.
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For all T̂k ≤ t < T̂k + θk+1Tk+1, k = 0, 1, 2, · · · and i ∈ T,

Qi(t) < hM0 exp
{
%
( k∑

j=0

(1 − θ j)T j

)}
. (22)

And for all T̂k + θk+1Tk+1 ≤ t < T̂k+1, k = 0, 1, 2, · · · and i ∈ T,

Qi(t) < hM0 exp
{
%
(
t −

( k+1∑
j=0

θ jT j

) )}
≤ hM0 exp

{
%
( k+1∑

j=0

(1 − θ j)T j

)}
. (23)

Recalling that Qi(t) = exp{εt}Vi(t), it follows from (22) and (23) that for all i ∈ T and t ∈ [T̂k, T̂k + θk+1Tk+1),
k = 0, 1, 2 · · · ,

Vi(t) < hM0exp{−εt} exp
{
%
( k∑

j=0

(1 − θ j)T j

)}
≤ hM0 exp

{
− ε

( k∑
j=0

T j

)
+ %

( k∑
j=0

(1 − θ j)T j

)}
, (24)

and for all i ∈ T and t ∈ [T̂k + θk+1Tk+1, T̂k+1), k = 0, 1, 2 · · · ,

Vi(t) < hM0exp{−εt} exp
{
%
( k+1∑

j=0

(1 − θ j)T j

)}
< hM0 exp

{
%(1 − θk+1)Tk+1

}
exp

{
− ε

( k∑
j=0

T j

)
+ %

( k∑
j=0

(1 − θ j)T j

)}
.(25)

Since all the rest widths (Tm − δm), m ∈ Z+, are bounded, we can assume that supm∈Z+

{
Tm − δm

}
= $0, where $0 > 0

is a positive constant. Denote Υ0 = hM0 exp
{
%$0

}
, we have from (24) and (25) that

Vi(t) < Υ0 exp
{
− ε

( k∑
j=0

T j

)
+ %

( k∑
j=0

(1 − θ j)T j

)}
, for all t ∈ [T̂k, T̂k+1), k = 0, 1, 2 · · · and i ∈ T. (26)

According to condition (ii), one has limt→+∞ Vi(t) = 0, for all i ∈ T. The proof is completed.

Remark 3 From the proof of Theorem 1, we can see that in the work time
[
T̂k, T̂k + θk+1Tk+1

)
, the control, which benefits

network synchronization, is imposed to the network; while in the rest time
[
T̂k + θk+1Tk+1, T̂k+1

)
, the control is removed,

which means that this time span does not promote (may be harmful for) the synchronization. Therefore, for achieving
synchronization, one can simply make the work time as long as possible and the rest time as short as possible.

Define the following indices

AE( j) = −εT j + (p + η1)(1 − θ j)T j, j = 0, 1, 2, · · · ,

then it can be observed from (26) that the aggregated effects of intermittent control in the time of the ( j + 1)th period[
T̂ j, T̂ j+1

)
can be characterized by the index AE( j). Evidently, when AE( j) < 0 (> 0), the aggregated effects of the

intermittent control are beneficial (harmful) for the synchronization. It should be stressed that, it is not necessary to
ensure that AE( j) < 0 for all j = 0, 1, 2, · · · , that is to say, it is allowable that AE( j) ≥ 0 for some time span

[
T̂ j, T̂ j+1

)
,

provided that condition (ii) in Theorem 1 holds.
Suppose that η1 is given as η∗1 > q. Substituting η1 = η∗1 into the equation ε− η1 + 2L2exp{εσ}+ ac exp{ετ} = 0 yields

ε = ϕ(η∗1), then the following result can be obtained readily from Theorem 1.

Corollary 1 Suppose that all the rest widths (Tm − δm), m ∈ Z+, are bounded and η1 is given as η∗1 > q. Then the
controlled delayed dynamical network (5) can realize global synchronization if the following conditions hold:

(i) d ≥
(p + η∗1)

2
> 0, (ii) lim

k→+∞

[
− ϕ(η∗1)

( k∑
j=0

T j

)
+ (η∗1 + p)

( k∑
j=0

(1 − θ j)T j

)]
= −∞,

where p = 2L1 + acλmax
(
ΓΓ> − (Γ + Γ>)

)
and q = 2L2 + ac.
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In real-world applications, condition (ii) of Corollary 1 is not easy to be verified. In the following, two special cases
will be discussed, which will simplify the validation of the condition.

Case 1 Periodically intermittent control scheme.

When each control period and each control rate are fixed, i.e., Tm ≡ T and θm ≡ θ for all m ∈ Z+, where T and θ are
both positive constants, then the control becomes periodically intermittent control [17]. For this case, we can obtain the
following result from Corollary 1.

Corollary 2 Suppose that η1 is given as η∗1 > q. If the following conditions hold:

(i) d ≥
(p + η∗1)

2
> 0, (ii) 1 −

ϕ(η∗1)
p + η∗1

< θ < 1,

where p and q are defined in Corollary 1, then the controlled delayed dynamical network (5) can realize global synchro-
nization.

In this case, it is easy to observe that the index AE( j) = −ϕ(η∗1)T + (p + η∗1)(1 − θ)T =
(
− ϕ(η∗1) + (p + η∗1)(1 − θ)

)
T,

j = 0, 1, 2, · · · . Therefore, condition (ii) in Corollary 2 implies that AE( j) < 0 holds for any j = 0, 1, 2, · · · , and so
condition (ii) in Corollary 1 is satisfied. In [22], complex dynamical networks with finite distributed delays coupling
under periodically intermittent control are investigated, and similar results are also derived.

Case 2 Aperiodically intermittent control scheme.

Suppose that infm∈Z+ {θm} = θinf > 0 for the aperiodically intermittent control strategy, where θinf is a positive constant.
Then the following result is easily obtained from Corollary 1.

Corollary 3 Suppose that η1 is given as η∗1 > q. If the following conditions hold:

(i) d ≥
(p + η∗1)

2
> 0, (ii) 1 −

ϕ(η∗1)
p + η∗1

< θinf < 1,

where p and q are defined in Corollary 1, then the controlled delayed dynamical network (5) can realize global synchro-
nization.

For this case, the index AE( j) = −ϕ(η∗1)T j + (p + η∗1)(1 − θ j)T j ≤
(
− ϕ(η∗1) + (p + η∗1)(1 − θinf)

)
T j , j = 0, 1, 2, · · · .

Since condition (ii) in Corollary 4 means that AE( j) < 0 holds for any j = 0, 1, 2, · · · , condition (ii) in Corollary 1 holds.
Evidently, this intermittent control type takes the aforementioned type of intermittent control (Case 1) as a special case.

Remark 4 In [16–25], the synchronization problem for chaotic systems as well as complex dynamical networks via peri-
odically intermittent control was investigated. However, the designed controllers in [16–25] are periodically intermittent
with fixed control period and control width (i.e., Tm ≡ T and δm ≡ δ for all m ∈ Z+). Obviously, this requirement is un-
reasonable and limits the application scopes of the theoretical results. In this paper, based on aperiodically intermittent
control technique, some global synchronization criteria are developed for complex dynamical networks with internal delay
and distributed-delay coupling. To the best of our knowledge, result on synchronization of complex dynamical networks
with internal delay and distributed-delay coupling via aperiodically intermittent control has not yet been reported. In our
network model, the internal delay can be constant or time-varying, and even non-differentiable; the coupling matrix are
not demanded to be symmetric or irreducible. Therefore, our theoretical results are more general and expand the scope
of practical applications of intermittent control strategy.

Remark 5 From Corollary 4, it can be seen that only the control rate θinf , rather than either the control width δm or
the control period Tm, affects the control performance. This means that, for achieving the synchronization, each control
period Tm, m ∈ Z+ can be arbitrarily selected according to the actual requirement, only if condition (ii) in Corollary 4
holds. This facilitates the potential practical applications of the theoretical results in engineering fields.

Remark 6 For illuminating how to design suitable aperiodic intermittent controllers in real-world applications for the
achievement of the synchronization for a given delayed dynamical network (1) and a given synchronous state π(t), we take
example for the application of Corollary 4, the following steps are provided:
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Step 1. For a given η∗1, calculate the value of ϕ(η∗1), and then choose control gain d and control rates θm, m ∈ Z+ such
that conditions (i) and (ii) of Corollary 4 are satisfied.

Step 2. Select control periods Tm, m ∈ Z+ according to the actual requirement.
Step 3. Based on the above chosen d, θm, Tm, design aperiodic intermittent controller ui(t) described in (6).

4 Numerical simulations

In this section, a numerical example is given to illustrate the effectiveness of the theoretical results derived above.
Consider the controlled delayed dynamical network (5) consisting of 100 identical delayed Chua oscillators, which is

described by

ẋi(t) = f (t, xi(t), xi(t − σ(t))) + c
100∑

j=1, j,i

bi jΓ
( ∫ t

t−τ
ρ(t − s)x j(s) ds − xi(t)

)
+ ui(t), (27)

where i = 1, 2, · · · , 100, Γ = I3, c = 1, τ = 0.25, ρ(t) = 8 − 32t for t ∈ [0, 0.25]. The coupling matrix B is of the form

B =



−1 1 0 ··· 0

0 −1 1 ··· 0

...
...

. . .
. . .

...

0 ··· 0 −1 1

1 0 ··· 0 −1


100×100

and then a = 1. The dynamics of the delayed Chua oscillator is given by [16]

ẋi(t) = f (t, xi(t), xi(t − σ(t))) = Ax(t) + f1(xi(t)) + f2(xi(t − σ(t))), (28)

where xi(t)=
(
xi1(t), xi2(t), xi3(t)

)>
∈R3, f1(xi(t))=

(
− 1

2α0(a1 − a2)(|xi1(t) + 1| − |xi1(t) − 1| ), 0, 0
)>
∈R3, f2(x(t − σ(t))) =(

0, 0, −β0η0 sin(v0x1(t − σ(t)))
)>
∈ R3, A =

 −α0(1+a2) α0 0

1 −1 1
0 −β0 −ω0

, and α0=10, β0= 17.53, ω0= 0.1636, a1= −1.4325,

a2=−0.7831, v0 = 0.5, η0 = 0.2, and σ(t) = 0.02. It is easy to check that(
x(t) − y(t)

)>( f (t, x(t), x(t − σ(t))) − f (t, y(t), y(t − σ(t)))
)

≤
1
2
(
x(t) − y(t)

)>(A + A>)
(
x(t) − y(t)

)
+ |α0(a1 − a2)|

(
x1(t) − y1(t)

)2
+ β0η0v0|x3(t) − y3(t)| |x1(t − σ(t)) − y1(t − σ(t))|

≤ λmax(Ã)
(
x(t) − y(t)

)>(x(t) − y(t)
)

+ (β0η0v0)/(2ε1)
(
x(t − σ(t)) − y(t − σ(t))

)>(x(t − σ(t)) − y(t − σ(t))
)

= L1
(
x(t) − y(t)

)>(x(t) − y(t)
)

+ L2
(
x(t − σ(t)) − y(t − σ(t))

)>(x(t − σ(t)) − y(t − σ(t))
)
,

where Ã = (A + A>)/2 + diag
(
|α0(a1 − a2)|, 0, ε1(β0η0v0)/2

)
, and L1 = λmax(Ã), L2 = (β0η0v0)/(2ε1) can be determined by

selecting an appropriate parameter ε1 > 0. Therefore, (A1) is satisfied.
Let ε1 = 2, then one has L1 = 10.9151, L2 = 0.4383, and so p = 20.8302, q = 1.8766. Based on Corollary 4 (ii),

the relationship curve between the parameter η∗1 and the control rate θinf is depicted in Fig. 1. If η∗1 = 30 is selected as a
special case, by conditions (i) and (ii) of Corollary 3, we get

d ≥ 25.4151, 0.7796 < θinf < 1.

For simplicity, select d = 25.5, θm = 0.80, and Tm = tm+1 − tm = 0.2m, m ∈ Z+, then condition (42) holds. Fig. 2
shows the time evolutions of the state variables xi1(t), xi2(t), xi3(t) (1 ≤ i ≤ 100) for system (40) with different initial
values under the aperiodic intermittent controllers (6)-(7), which indicates the controlled delayed dynamical network (40)
is asymptotically synchronized.
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Figure 1: The relationship curve between the parameter η∗1 and the control rate θinf .
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Figure 2: Time evolutions of the state variables xi1(t), xi2(t), xi3(t), 1 ≤ i ≤ 100 for system (40) under the aperiodically
intermittent control.

5 Conclusion

In this paper, the aperiodically intermittent control was generalized to investigate the synchronization problem for a
class of complex dynamical networks with internal delay and distributed-delay coupling. Some sufficient conditions to
guarantee global synchronization are derived by utilizing the reduction to absurdity and mathematical induction method.
Finally, numerical simulations are given to show the feasibility of the theoretical results.
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