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Abstract: The non-linear complementarity problem NLCP is to find a vector z in IRn satisfying 0 6 z ⊥
f(z) > 0, where f is a given function. This problem can be solved by several methods but the most of these
methods require a lot of arithmetic operations, and therefore, it is too difficult, time consuming, or expensive
to find an approximate solution of the exact solution. In this paper we give a new method for solving this
problem which converges very rapidly relative to most of the existing methods and does not require a lot of
arithmetic operations to converge. For this we show that solving the NLCP is equivalent to finding zero
of the function F . After we build a sequence of smooth functions F (k) ∈ C∞ which is uniformly conver-
gent to the function F and we show that, an approximation of the solution of the NLCP is obtained by
solving F (k)(x) = 0 for a parameter k large enough. We close our paper with some numerical examples to
demonstrate the efficiency of our method. The numerical results obtained in this paper are very favorable and
showed that our method works well for the problems tested.

Keywords: Non-linear complementarity problem; Sequence of smooth functions; System of non-linear e-
quations; Approximation of the solution.
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1 Introduction
The non-linear complementarity problem has a number of important applications in operations research, economic equi-
librium problems and in the engineering sciences. A variety of economic, biologic and physical phenomena are most
naturally modeled by saying that certain pairs of inequality constraints must be complementary, in the sense that at least
one must hold with equality. This problem has attracted much attention due its various applications. For a description of
many of these applications, we refer the reader to [9–13, 17].

In order to understand the peculiarity of this problem and provide a new effective method to solve it, let IRn be the
n-dimensional Euclidean space and consider the complementarity problem (linear or non-linear), defined by a continuous
mapping f : IRn → IRn, is to find an element z ∈ IRn such that

z > 0, f(z) > 0 and zT f(z) = 0, (1)

where z > 0 mean that zi > 0 for all i = 1, 2, ..., n and the superscript T denotes the transpose of a vector.
We have to note that since zT f(z) =

∑n
i=1zifi(z), this can be equivalently stated as

zi > 0, fi(z) > 0 and zifi(z) = 0, for all i = 1, 2, ..., n. (2)

In effect then complementarity states that either zi or fi(z) must be zero for each i = 1, 2, ..., n.
Note that in the particular case where the function f is linear, that is to say it is written as follows f(z) = q + Mz,

where M ∈ IRn×n and q ∈ IRn are given, then we say that the problem (1) is a Linear Complementarity Problem noted
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LCP (q,M). This particular problem is an important problem in mathematical programming (see, e.g., EL Foutayeni[14]
and Garcia et al.[20] for references). To solve this problem, there are several methods and algorithms, we cite for example,
Lemke[23] first presented a solution for this problem. His ideas were later exploited by Scarf[28] in his work on fixed point
algorithms. The relationship between the LCP (q,M) and the fixed point problem is well described by Eaves and Scarf[6]
and by Eaves and Lemke[4]. Cottle and Dantzig’s principal pivot method[2] and recently our modest works [7, 8, 15, 16].
In the first one, we have built an interior point method to solve a linear complementarity problem LCP (q,M); the
convergence of this method requires o(

√
nL) number of iterations where L is the length of a binary coding of the input

data of the problem LCP (q,M). This interior point method is globally efficient and has a good iteration complexity but it
has the problem of finding a strictly feasible starting point. In the second one, we have given a globally convergent hybrid
method which is based on vector divisions and the secant method for solving the LCP (q,M). In the third one, we have
given a general characterization of a linear complementarity problem LCP (q,M). Furthermore, through the paper [15],
we can provide the solution (if it exists) of a linear complementarity problem in a straightforward manner and according to
the data. In the fourth one, we have shown that the linear complementarity problem LCP (q,M) is completely equivalent
to finding the fixed point of the map x = max (0, (I −M)x− q); to find an approximation of the solution to the second
problem, we have proposed an algorithm starting from any interval vector X(0) and generating a sequence of the interval
vector (X(k))k=1,.. which converges to the exact solution of linear complementarity problem.

In the general case where the function f is non-linear, then we say that the problem (1) is a Non-Linear Complementar-
ity Problem noted NLCP (f), this problem can be solved by methods for finding a zero point in several ways. Converting
the NLCP (f) into a zero finding problem. Numerous methods and algorithms exist to solve non-linear complemen-
tarity problems such as the homotopy methods of Merrill[26] and several other authors (see for example Eaves[3, 5],
Saigal[27]), using a reformulation of the NLCP (f) due to Mangasarian[25] in which the zero finding problem can be
made as smooth as desired, Watson[29] applied the homotopy or continuation method of Chow, Mallet-Paret and Yorke[1]
to solve the problem. Instead of reformulating the NLCP (f) as a zero finding problem, other authors adjusted simplicial
fixed point algorithms to solve the NLCP (f) directly, see e.g. Fisher et al.[18], Garcia[19], Kojima[22] or Lüthi[24]. All
of the mentioned methods and algorithms for solving the non-linear complementarity problem require a lot of arithmetic
operations, and therefore, it is too difficult, time consuming, or expensive to find an approximate solution of the exact
solution of NCP (f).

In this paper, we assume that the problem (1) has a unique solution; our objective is to find this solution. To calculate
it, we give a new method for solving the non-linear complementarity problem in general case; this method converges
very rapidly relative to most of the existing methods and does not require a lot of arithmetic operations to converge. We
assume that the problem has a unique solution and we show that solving NLCP (f) is equivalent to solving the system
of non-linear equations F (x) = 0, where F is a function from IRn into itself defined by F (x) = f(|x| − x) − |x| − x.
We have to note that there is no method, to our knowledge, that gives a solution which converges very rapidly compared
to existing methods because of the non-differentiability of the function F . This is why we are building a sequence of
smooth functions F (k) ∈ C∞ which is uniformly convergent to the function F ; and we show that, an approximation of
the solution of NLCP (f) is obtained by solving F (k)(x) = 0 for a parameter k large enough.

The rest of this paper is organized as follows. In section 2 we briefly give some definitions and notations to be used
throughout the paper, and we show that the non-linear complementarity problem NLCP (f) is equivalent to solving a
system of non-linear equations. In section 3 we give an algorithm for solving this system of non-linear equations. This
algorithm is based on the idea of the well known Newton’s method. In section 4 we give some numerical examples to
illustrate our theoretical results and to show that this method can solve efficiently large-scale non-linear complementarity
problems and in the last section, we present our conclusions.

2 Main result
The mathematical formulation of the non-linear complementarity problem is as follows. Let f be a given continuous
function from IRn into itself and let fi and zi, i = 1, 2, ..., n, denote the components of f and z, respectively. The
non-linear complementarity problem, denoted by NLCP (f) for short, which is to find a point z such that

zi > 0, fi(z) > 0 and zifi(z) = 0, for all i = 1, 2, ..., n. (3)

Here, we assume that f is a uniformly continuous function. In the rest we give a completely equivalent formulation of
the non-linear complementarity problem as a system of n non-linear equations in n unknown and thereby make possible
the use of the powerful tools of non-linear equations theory. Thereafter, let F (x) = f(|x| − x) − |x| − x, where
|x| = (|x1| , |x2| , ..., |xn|)T ∈ IRn. Our principal result is the following theorem
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Theorem 1 The vector z solves the non-linear complementarity problem (1) if and only if the vector x = 1
2 (f(z)− z)

solves the equation F (x) = 0.

Proof. Necessity. Let z be a solution of (1) and let

x =
1

2
(f(z)− z) (4)

then |x| = 1
2 |f(z)− z|; thus |x| − x = 1

2 (|f(z)− z| − (f(z)− z)).
Now, if zi > 0 then fi(z) = 0, therefore |xi| − xi = zi;
else i.e. zi = 0 then fi(z) > 0, therefore |xi| − xi = zi.
So in all cases

|x| − x = z. (5)

Now using (4) and (5) we have |x| + x = f(z), thus, |x| + x = f(|x| − x), and therefore x is a zero of the function
F (x) = f(|x| − x)− |x| − x.

Sufficiency. Let x be a zero of the function F then we have

f(|x| − x) = |x|+ x. (6)

Let z := |x| − x then we have
(a) z > 0;
(b) f(z) = f(|x| − x) = |x|+ x > 0;
(c) zT f(z) = (|x| − x)T (|x|+ x) = 0.

Therefore z is a solution of (1). This completes the proof of the Theorem.
We have to note that the previous theorem shows that the problem (1) has a solution if and only if the system of

non-linear equations F (x) = 0 has a solution. Now we show that

Theorem 2 Let assume that the non-linear complementarity problem (1) has a unique solution. Then x = 1
2 (f(z)− z)

is a unique solution of the system of non-linear equations F (x) = 0.

Proof. Let assume that the non-linear complementarity problem (1) has a unique solution z and let x1 and x2 be two
distinct zeros of the function F , then {

z1 := |x1| − x1 is a solution of (1)
z2 := |x2| − x2 is a solution of (1)

On the one hand, since z1 = z2 (= z, uniqueness of the solution of (1)) then

|x1| − x1 = |x2| − x2. (7)

On the other hand, f(z1) = f(z2) implies that

|x1|+ x1 = |x2|+ x2. (8)

From (8) and (7) we have that x1 = x2. This contradicts x1 and x2 are two distinct zeros of the function F . This
completes the proof of the Theorem.

As mentioned above, solving the non-linear complementarity problem NLCP (f) is equivalent to finding the zero of
the function F . In the literature, there is no effective and rapid method to solve the equation F (x) = 0. Note that to use
one of the existing effective and rapid methods, it is necessary that the function F must be at least class C1, but it is clear
that this function is however not the case here. The problem of the function F is that it contains the absolute value |x|.

In the following analysis, our goal is to build a sequence of smooth functions F (k) ∈ C∞ which uniformly converges
to the function F (recall that the sequence of smooth functions g(k) converges uniformly to g on IRn if

∥∥g(k)(x)− g(x)
∥∥→

0 as k → +∞, where ∥x∥ denotes the Euclidean norm of x), and we show that finding the zero of the function F is e-
quivalent to finding the zero of the sequence of smooth functions F (k).

For the rest of this paper, we use the following notations
(a) For x, y ∈ IRn, x 6 y meaning that xi 6 yi for all i = 1, 2, ..., n;
(b) For x ∈ IRn we denote by x2 := (x2

1, x
2
2, ..., x

2
n)

T ∈ IRn;
(c) For x ∈ IRn we denote by

√
x := (

√
x1,

√
x2, ...,

√
xn)

T ∈ IRn;
(d) For x ∈ IRn and k ∈ IN∗ we denote by

x2 +
1

k2
:= (x2

1 +
1

k2
, x2

2 +
1

k2
, ..., x2

n +
1

k2
)T ∈ IRn.
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Lemma 3 The sequence of smooth functions x ∈ IRn 7→
√
x2 + 1

k2 converges uniformly to the absolute value function
x ∈ IRn 7→ |x| on IRn when k → +∞.

Proof. Since x2 + 1
k2 > x2 for all x ∈ IRn and all k ∈ IN∗, then we have√

x2 +
1

k2
>

√
x2 = |x|. (9)

Moreover the inequality
√
a+ b 6 √

a+
√
b is valid for all positive real numbers a and b, we deduce that√

x2 +
1

k2
6

√
x2 +

√
1

k2
= |x|+ 1

k
. (10)

Thus, for any x ∈ IRn we have

0 6
√
x2 +

1

k2
− |x| 6 1

k
, (11)

this implying that

sup
x∈IRn

∥∥∥∥∥
√
x2 +

1

k2
− |x|

∥∥∥∥∥ 6 1

k
. (12)

As the numerical sequence (uk)k general term uk = 1
k converges to 0, we deduce that the sequence of smooth functions

x ∈ IRn 7→
√
x2 + 1

k2 converges uniformly to |x| on IRn. This completes the proof of the Lemma.

We now consider the sequence of smooth functions F (k) : IRn → IRn defined by

F (k)(x) := f

(√
x2 +

1

k2
− x

)
−
√

x2 +
1

k2
− x,

and we show that

Theorem 4 The sequence of smooth functions (F (k))k>1 converges uniformly to F on IRn when k → +∞.

Proof. Using the previous Lemma we get√
x2 +

1

k2
converges uniformly to |x| as k → +∞;

and using the fact that f is a uniformly continuous function then we have

f

(√
x2 +

1

k2
− x

)
converges uniformly to f(|x| − x) as k → +∞.

Thus, the sequence of smooth functions F (k) converges uniformly to F when k → +∞. This completes the proof of
the Theorem.

Now we show that if x∗
(k) is the zero of the sequence of smooth functions F (k), then x∗

(k) is an approximation to the
solution of the system of non-linear equations F (x) = 0 for k large enough.

Corollary 5 If x∗
(k) is the solution of the equation F (k)(x) = 0, then x∗

(k) is an approximation to the solution of the
equation F (x) = 0 for k is large enough.

Proof. To show that, we use the previous theorem which we can interpret as
∀ϵ > 0, ∃ k∗ > 0 such that for all k > k∗ we have

||F (x∗
(k))|| = ||F (x∗

(k))− F (k)(x∗
(k))|| 6 ϵ

then we have for any ϵ > 0, x∗
(k) is the approximation to the solution of the equation F (x) = 0. This completes the proof

of the Corollary.
Now we can use any effective and rapid method to solve the system of non-linear equations F (k)(x) = 0 for k is large

enough. In the next section, we will look at one method in particular, Newton’s method (a method other than Newton may
be used). We are going to write our own algorithm for solving the system of non-linear equations using Newton’s method.
Note that Matlab has its own algorithms for solving systems of non-linear equations (e.g. fsolve, which is loosely based
on Newton’s method).
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3 Algorithm
The following algorithm tries to solve the non-linear complementarity problem by solving the equivalent non-linear system
of equations

F (k)(x) = f

(√
x2 +

1

k2
− x

)
−
√
x2 +

1

k2
− x = 0.

Generally, a non-linear system of equations for x = (x1, x2, ..., xn)
T has the following form

F
(k)
i (x1, x2, ..., xn) = 0, i = 1, 2, ..., n

If we start with a guessed value xi, we can find a better guess by extrapolation. Near our guessed value, the function
can be expanded

F
(k)
1 (xi + dx)

F
(k)
2 (xi + dx)

...

F
(k)
n (xi + dx)

 =


F

(k)
1 (xi)

F
(k)
2 (xi)
...

F
(k)
n (xi)

+


∂F

(k)
1

∂x1
dx1 +

∂F
(k)
1

∂x2
dx2 + ...+

∂F
(k)
1

∂xn
dxn

∂F
(k)
2

∂x1
dx1 +

∂F
(k)
2

∂x2
dx2 + ...+

∂F
(k)
2

∂xn
dxn

...
∂F (k)

n

∂x1
dx1 +

∂F (k)
n

∂x2
dx2 + ...+

∂F (k)
n

∂xn
dxn


Note that these derivatives are evaluated at the x = xi.

F
(k)
1 (xi + dx)

F
(k)
2 (xi + dx)

...

F
(k)
n (xi + dx)

 =


F

(k)
1 (xi)

F
(k)
2 (xi)
...

F
(k)
n (xi)

+


∂F

(k)
1

∂x1

∂F
(k)
1

∂x2
...

∂F
(k)
1

∂xn

∂F
(k)
2

∂x1

∂F
(k)
2

∂x2
...

∂F
(k)
2

∂xn

... ... ... ...
∂F (k)

n

∂x1

∂F (k)
n

∂x2
...

∂F (k)
n

∂xn


(xi)


dx1

dx2

...
dxn


In other word

F (k)(xi + dx) = F (k)(xi) + Jdx, (13)

where J is the Jacobian matrix, it is given by

J =


X̃1D1f1(X)− X̄1 X̃2D2f1 (X) ... X̃nDnf1 (X)

X̃1D1f2 (X) X̃2D2f2 (X)− X̄2 ... X̃nDnf2 (X)
................... ................... ... ...................

X̃1D1fn (X) X̃2D2fn (X) ... X̃nDnfn (X)− X̄n

 (14)

where
X = (X1, X2, ..., Xn)

T such as Xi =
√(

x2
i +

1
k2

)
− xi for all i = 1, 2, ..., n;

X̃ = (X̃1, X̃2, ..., X̃n)
T such as X̃i =

1√
(x2

i+
1
k2 )

xi − 1 for all i = 1, 2, ..., n;

X̄ = (X̄1, X̄2, ..., X̄n)
T such as X̄i = − 1√

(x2
i+

1
k2 )

xi − 1 for all i = 1, 2, ..., n; and where we have denoted by

Difj(X) the partial derivative of fj with respect to xi evaluated at the point X .
Thus the Jacobian matrix J given by (14) can be written in the following form

J = Jf (X)×Diag(X̃)−Diag(X̄), (15)

where

Jf (X) =


D1f1(X) D2f1 (X) ... Dnf1 (X)
D1f2 (X) D2f2 (X) ... Dnf2 (X)
........ ........ ... ........
D1fn (X) D2fn (X) ... Dnfn (X)



Diag(X̃) =


X̃1 0 ... 0

0 X̃2 ... 0
... .... ... ...

0 0 ... X̃n
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Diag(X̄) =


X̄1 0 ... 0
0 X̄2 ... 0
... ... ... ...
0 0 ... X̄n


Now we want our new vector xi+1 = xi + dx to be a better approximation to the solution, so we set F (k)(xi+1) = 0

in equation (13). Then
−F (k)(xi) = Jdx.

The procedure for Newton’s method is

• Calculate the function values at the guessed value of xi = (x1, x2, ..., xn)
T ;

• Calculate the Jacobian matrix using the current guess for the solution;

• Solve the linear system −F (k)(xi) = Jdx for the values of dx;

• Update the guessed value xi+1 = xi + dx;

This procedure should be repeated, using the updated value of xi as the guess, until the values of F (k)(x) are suffi-
ciently close to zero. F (k)(x) is a vector of residual errors. For sufficiently close to zero we could use

∥∥∥F (k)(x)
∥∥∥ =

(
n∑

i=1

(F
(k)
i (x))2

)1/2

< Tolerance.

Thus, x is an approximation to the solution of F (x) = 0; and therefore z = |x|−x is an approximation to the solution
of (1). In the next section we give some numerical examples to illustrate our theoretical results and to show that this
method can solve efficiently large-scale non-linear complementarity problems.

4 Numerical tests
In this section, we provide numerical examples to demonstrate the efficiency of our method. To do so, we conducted the
numerical experiments on some test problems.

In the following, we will implement our algorithm in Matlab 7.2 and run it on a personal computer with a 1.66 GHZ
CPU processor and 1 Go memory. We stop the iterations if the condition ||F (k)(x)|| 6 10−6 is satisfied for k large
enough.

We begin first by noting that this method can be used to solve linear complementarity problems. To test this method
for solving the LCP, we take the following examples

Example 1. Let us consider the following linear complementarity problem LCP (q,M), find vector z satisfying
Mz + q > 0, z > 0 and zT (Mz + q) = 0,

where M = (mij)1≤i,j≤n such as mii = 4, mi,i+1 = mi+1,i = −1 for all i = 1, ..., n and zero in the rest and
q = (qi)1≤i≤n such as qi = −1.

This example is used by Geiger and Kanzow[21]. The test results of this example are summarized in Table 1.
Example 2. Let us consider the following linear complementarity problem LCP (q,M) where M = (mij)1≤i,j≤n

such as mij = iδij/n where δ is the Kronecker’s delta (δii = 1 and δij = 0 if i ̸= j) and q = (qi)1≤i≤n such as qi = −1.
This example is used by Geiger and Kanzow[21]. The test results of this example are summarized in Table 2.
We use our method and several known methods (Lemke, Chen et al., Yu and Qin, EL Foutayeni and Khaladi) to solve

these examples and compare it with the known exact solution z∗ and compare the number of iterations and the execution
time for each methods.

When looking for an approximation with six significant digits, we obtain that (see Table 1 and Table 2) using our
method who does not require a lot of iterations and not a lot of CPU time by against, the other methods require a lot of
arithmetic operations, and therefore, it is too difficult, time consuming, and expensive to find an approximate solution of
the exact solution as shown in Tables 1 and 2, where Iter denotes the iteration number when the algorithm terminates; and
Time denotes the total cost time (in second) for solving the LCP (q,M).

The table 1 shows that the numerical results of the methods of Lemke, Chen et al., Yu et al. and our method to
solve the first example. We have to note that this example is taken from [21]. In this example we take k = 100 and
x(0) = (2, 1, ..., 1)T .
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Table 1: Numerical results of the first example
Method n Approximation to the solution of LCP(q,M) Iter Time(s)
Lemke 4 (0.363636;0.454545;0.454545;0.363636) 5 0.009567

8 (0.366013;0.464052;0.490196;0.496732; 5 0.057053
0.496732;0.490196;0.464052;0.366013)

Chen, Harker 4 (0.363636;0.454545;0.454545;0.363636) 5 0.016000
Kanzow and 8 (0.366013;0.464052;0.490196;0.496732; 5 0.031000
Smale 0.496732;0.490196;0.464052;0.366013)
Yu 4 (0.363636;0.454545;0.454545;0.363636) 5 0.031000
and 8 (0.366013;0.464052;0.490196;0.496732; 5 0.016000
Qin 0.496732;0.490196;0.464052;0.366013)
EL Foutayeni 4 (0.363636;0.454545;0.454545;0.363636) 2 0.004935
and 8 (0.366013;0.464052;0.490196;0.496732; 2 0.008255
Khaladi 0.496732;0.490196;0.464052;0.366013)

Now let’s compare these methods with ours, using the second example. This example is taken from [21]. In this
example we take k = 100 and x(0) = (2, 1, ..., 1)T . The following table (Table 2) clearly shows the effectiveness of our
method over existing methods.

Table 2: Numerical results of the second example
Method n Approximation to the solution of LCP(q,M) Iter Time(s)
Lemke 4 (4.000000;2.000000;1.333333;1.000000) 5 0.029403

8 (8.000000;4.000000;2.666667;2.000000; 6 0.049984
1.600000;1.333333;1.142857;1.000000)

Chen, Harker 4 (4.000000;2.000000;1.333333;1.000000) 5 0.016000
Kanzow and 8 (8.000000;4.000000;2.666667;2.000000; 7 0.031000
Smale 1.600000;1.333333;1.142860;1.000000)
Yu 4 (4.000000;2.000000;1.333333;1.000000) 5 0.016000
and 8 (8.000000;4.000000;2.666667;2.000000; 8 0.047000
Qin 1.600000;1.333333;1.142860;1.000000)
EL Foutayeni 4 (4.000000;2.000000;1.333333;1.000000) 2 0.006999
and 8 (8.000000;4.000000;2.666667;2.000000; 2 0.009289
Khaladi 1.600000;1.333333;1.142857;1.000000)

Now we test two well-known non-linear complementarity problems by our method. For each test problem, we also
compare the numerical performance of the proposed method with various values of k and various initial states x0. The
test instances are described below.

Example 3. Consider the NLCP, where f : IR4 → IR4 is given by

f(z) :=


f1(z) = −z2 + z3 + z4
f2(z) = z1 − (4.5z3 + 2.7z4)/(z2 + 1)
f3(z) = 5− z1 − (0.5z3 + 0.3z4)/(z3 + 1)
f4(z) = 3− z1

Example 4. Consider the NLCP, where f : IR4 → IR4 is given by

f(z) :=


f1(z) = 3z21 + 2z1z2 + 2z22 + z3 + 3z4 + 6
f2(z) = 2z21 + z1 + z22 + 10z3 + 2z4 − 2
f3(z) = 3z21 + z1z2 + 2z22 + 2z3 + 9z4 − 9
f4(z) = z21 + 3z22 + 2z3 + 3z4 − 3
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The numerical results reported in Tables 3 and 4 show that the method proposed in this paper is quite well for solving the
complementarity problems.

We compare the results obtained by our method with that obtained by the CHKS and Yu-Qin methods. The results
are summarized in Tables 3 and 4, where Iter denotes the iteration number when the algorithm terminates; and Time
denotes the total cost time (in second) for solving the NCP problem. We also stop the execution when 500 iterations were
completed without achieving convergence and denoted by fail. From Tables 3 and 4, we can see that our method can
comparable with the CHKS and Yu-Qin methods from the iteration number and the CPU times.

Table 3: Numerical results for the third example
Method Approximation to the solution of NLCP(f) Iter Time(s)
CHKS Fail
Yu-Qin (3;2.3948E-16;2.8833E-16;-1.0612E-17) 8 0.016000
EL Foutayeni-Khaladi (3;2.3948E-16;2.8833E-16;-1.0612E-17) 7 0.006999

The table 3 shows that the numerical results of different methods to solve the non-linear complementarity problem
NLCP (f) of the third example, the exact solution is z∗ = (3, 0, 0, 0)T . Note that this example is taken from [30]. In this
example we take k = 100 and x(0) = (2, 1, 1, 1)T .

Table 4: Numerical results for the fourth example
Method Approximation to the solution of NLCP(f) Iter Time(s)
CHKS (1.3100E-15;1.3994E-10;1.4931E-10;1) 6 0.016000
Yu-Qin (1.3100E-15;1.3994E-10;1.4931E-10;1) 12 0.046000
EL Foutayeni-Khaladi (1.3100E-15;1.3994E-10;1.4931E-10;1) 4 0.005984

The table 4 shows that the numerical results of different methods to solve the non-linear complementarity problem
NLCP (f) of the fourth example, the exact solution is z∗ = (0, 0, 0, 1)T . Note that this example is taken from [30]. In
this example we take k = 100 and x(0) = (2, 1, 1, 1)T .

Now we show that the influence of the parameter k on the value of the solution z of the non-linear complementarity
problem. For this we consider the following example

Example 5. Consider the NLCP (f), where f : IR5 → IR5 is given by

f(z) = 2 exp(
5∑

i=1

(zi − i+ 2)2)


z1 + 1
z2

z3 − 1
z4 − 2
z5 − 3

 .

Note that the solution to this problem is z∗ = (0, 0, 1, 2, 3)T . We have to note that this example is taken from [29].
Table 5 shows that at a certain rank of k, any solution of the equation F (k)(x) = 0 is an approximate solution of the

exact solution z∗ of non-linear complementarity problem NLCP (f).

5 Conclusion
In this paper we have given a new method for solving the non-linear complementarity problem. This method converges
very rapidly relative to most of the existing methods and does not require a lot of arithmetic operations to converge. The
results discussed in this paper are very favorable. Even stronger results have been obtained for monotone complementarity
problems. The numerical results showed that our method works well for the problems tested. The numerical tests confirm
the efficiency of our method. With regard to the nice theoretical results of our algorithm, the computational results reported
are very encouraging. We expect our algorithm can also solve large-scale problems well. As one of the remarks we would
like to point out that we can use this new method for solving linear complementarity problems.
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Table 5: Numerical results for the fifth example
k=1 Iter=27

Time(s)=0.053104
z=(0.1128;0.3543;1.1128;2.0609;3.0413)

k=2 Iter=24
Time(s)=0.062295
z=(0.0689;0.2713;1.0689;2.0362;3.0243)

k=3 Iter=23
Time(s)=0.046551
z=(0.0050;0.0266;0.7754;1.8790;2.9183)

k=10 Iter=22
Time(s)=0.051145
z=(0.0017;0.0156;0.9296;1.9640;2.9759)

k=50 Iter=22
Time(s)=0.0469141
z=(0.0004;0.0072;0.9857;1.9928;2.9952)

k=100 Iter=21
Time(s)=0.0401580
z=(0.0000;0.0000;0.9899;1.9998;2.9952)

k=106 Iter=21
Time(s)=0.0467373
z=(0.0000;0.0000;1.0000;2.0000;3.0000)
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