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Abstract: In this paper we study the existence of nontrivial radial solutions of the nonlinear Schrödinger-
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1 Introduction
In this paper we are concerned with the existence of nontrivial radial solutions of the following equation in R3{

−∆u+ V (|x|)u = f(|x| , u) + k(|x|)ϕu, x ∈ R3,

−∆ϕ = k(|x|)u2, x ∈ R3,
(1)

where k satisfies limx→∞k(x) = 0.
In the recent years, the following Schrödinger-Poisson system has been an object of interest for many mathematics.{

−∆u+ λV (x)u+ k(x)ϕu = f(x, u) in R3,

−∆ϕ = k(x)u2 in R3,
(2)

where λ ≥ 1 is a parameter. In present paper, we shall concerned with the situation of λ = 1. This system has been first
introduced in [5] as a physical model describing a charged wave interacting with its own electrostatic field in quantum
mechanic. The unknowns u and ϕ represent the wave functions associated to the particle and electric potential, and
functions V and k are respectively an external potential and nonnegative density charge. In fact, the system also arises in
semiconductor theory, nonlinear optics and plasma physics. For more details physical background, we refer the readers to
[5, 10, 11].

Up till now, under various assumptions on the potential V (x) and the nonlinearity f(x, u), there has been a large
number of papers on the study of existence and multiplicity of solutions of system (2) by taking advantages of variational
methods. One can refer the papers [1, 2, 4, 5, 10, 13, 25] and the references therein. Most of them solve the problem
where V is a positive constant or being radially symmetric and f(x, u) = |u|p−1

u, 1 < p < 5. In [28], Sánchez and Soler
deals with system (2) when p = 5

3 , λ = 1. They have obtained the exisitence of a positive solution by minimization on
Nehari manifold. Using the mountain pass theorem, the papers [9, 10] proved that system (2) has a radial positive solution
for 3 ≤ p < 5. The papers [26] also investigated the existence of multiple solutions for system (2), depending on λ and p.

In [25], Ruiz studied the following system:{
−∆u+ u+ λϕu = |u|p−1

u in R3,

−∆ϕ = u2 in R3,
(3)
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The author shows that if λ ≥ 1
4 , system (3) does not admit any non-trivial solution for p ∈ (1, 2], and if λ > 0 is

sufficiently small, it possesses two positive radial solutions for p ∈ (1, 2) and one positive radial solution for p = 2.
Moreover, if p ∈ (2, 5), there exists a positive radial solution for all λ > 0. Ambrosetti and Ruiz [1] and Ambrosetti
[2] also studied problem (3) with a parameter. They constructed the existence of infinitely many pairs of radial solutions,
when 2 < p < 5, for all λ > 0, and also multiple solutions (but not infinitely many), when 1 < p ≤ 2, for all λ > 0 small
sufficiently.

Very recently, Cerami and Vaira [8] considered the following system:{
−∆u+ u+ k(x)ϕu = a(x)|u|p−1

u in R3,

−∆ϕ = k(x)u2 in R3,
(4)

where 3 < p < 5, and k ∈ L2(R3). Applying the Nehari variational principle and concentration compactness argument,
they proved that (4) possesses a positive ground state solution when a : R3 → R and k : R3 → R are nonnegative
functions such that

lim
|x|→∞

a(x) = a∞ and lim
|x|→∞

k(x) = 0.

Furthermore, the semiclassical case of system (2) has received great attention in recent years and has been extensively
studied using variational methods. Replacing −∆ by −ε∆, D’Aprile and Wei [12] constructed positive radially symmetric
bound states of (2) with f(x, u) = up, 1 < p < 11

7 . Recently, making use of a standard Lyapunov-Schmidt reduction
methods (see [3]), Ruiz and Vaira [27] proved the existence of multi-bump solutions of (2), whose bumps concentrate
around a local minimum of the potential V (x) when f(x, u) = up and 3 < p < 5. The proofs explored in [17, 18] are
based on a singular perturbation. In this framework, one is interested not only in existence of solutions but also in their
asymptotic behavior as ε → 0. For more general information on semiclassical states for this system, see for example
[2, 15, 17–19, 26, 31–33] and the references therein.

Motivated by the papers [22, 34, 35], in this paper we shall concentrate on the existence of radial nontrivial solution
of (2) when V (x) is a sign-changing function. We shall recover the compactness by using special properties of radially
symmetric functions. Precisely, we use spectral properties of operator A = ∆+V (x) restricted to H1

rad(R3) for obtaining
a linking geometry structure to the problem.

In particular, supposing that V (x) satisfies:

(V1) V ∈ L∞(R3) is a radial sign-changing function, V (x) = V (|x|) = V (r), r ≥ 0.

(V2) Setting Ṽ (r) = V (r) + VN , where VN = (N−1)(N−3)
4r2 and Ã = − d2

dr2 + Ṽ (r), an operator of L2(0,∞),
0 /∈ σess(Ã) and

sup[σ(Ã) ∩ (−∞, 0)] = σ− < 0 < σ+ = inf[σ(Ã) ∩ (0,+∞)].

Moreover, we can assume that the nonlinear function f ∈ C(R3 × R,R) satisfying the following hypotheses:

(f1) For all t ∈ R, F (x, t) =
∫ t

0
f(x, s)ds ≥ 0 and f is a radial function such that lim

|s|→0

f(x,s)
s = 0, uniformly in x.

(f2) lim
|s|→+∞

f(x,s)
s = h(x), uniformly in x, where h ∈ L∞(R3).

(f3) a0 = inf
x∈R3

h(x) > σ+ = inf[σ(A) ∩ (0,+∞)].

(f4) Setting J = A−K, where K is the operator multiplication by (h(x) + k(x)ϕu) in L2(R3) and defining by σp(J )
the point spectrum of J , 0 /∈ σp(J ).

(f5) Denoting T (x, s) = 1
2f(x, s)s − F (x, s) ≥ 0 for all (x, s) ∈ (R3 × R,R) and exists κ0 > 0 such that f(x,s)

s ≥
κ0 ⇒ T (x, s) ≥ κ0.

Then the following main results hold.

Theorem 1 Under the assumptions (V1)-(V2) and (f1)-(f5), the problem (1) possess a radial, nontrivial, weak solution
in H1(R3).

IJNS email for contribution: editor@nonlinearscience.org.uk



Y. Luo: Existence of nontrivial radial solutions for Schrödinger-Possion system 5

We shall use the variational methods to prove main results. The rest of the paper is structured as follows. In next
section we first establish the variational setting for the system (1) and then we state our main result. In section 3 the
required compactness for the related functional is presented. Section 4 describes how to establish the linking geometry
by means of the sharp construction of the linking components based on the spectral results. The core of our arguments
is to by means of the strict inequality in (f3) throughout this section. Finally, we obtained the boundedness of Cerami
sequences for the functional and proved the main result.

2 The variational setting

Since V ∈ L∞(R3), A and Ã are self-adjoint operators, we can consider A = −∆ + V (x) as an operator of L2(R3).
From the Hardy’s inequality, we know that the operator Ã is treated in H1

0 (0,∞). Since H−, H0, H+ are the subspaces
of H1

0 (0,∞) on which Ã is negative, null and positive definite, it follows that H1
0 (0,∞) = H− ⊕H0 ⊕H+. In the light

of (V2) each u ∈ H+ satisfies
σ+||u||2L2(0,∞) ≤ (Ãu, u)L2(0,∞).

In addition, for u ∈ H1
0 (0,∞) and setting φ = r

1−N
2 u, it yields φ ∈ H1

rad(R3) (see [30, Section 3]), where H1
rad(R3) is

the Hilbert subspace of all radial symmetric functions in H1(R3). Moreover, we change the variables, then φ satisfies

||φ||2L2(R3) =

∫
R3

|φ(x)|2dx = φN

∫ ∞

0

|φ(r)|2rN−1dr

= φN

∫ ∞

0

r1−N |u(r)|2rN−1dr = φN

∫ ∞

0

|u(r)|2dr = φN ||u||2L2(0,∞),

and

(Aφ,φ)L2(R3) =

∫
R3

(|∇φ(x)|2 + V (x)φ(x)2)dx

= φN

∫ ∞

0

rN−1φ′(r)
2
dr + φN

∫ ∞

0

V (x)rN−1φ(r)
2
dr

= φN

∫ ∞

0

rN−1

[
1−N

2
r

1−N
2 −1u(r) + r

1−N
2 u′(r)

]2
dr + φN

∫ ∞

0

V (x)u(r)
2
dr

= φN

∫ ∞

0

[
u′(r)

2
+

(N − 1)(N − 3)

4r2
u(r)

2

]
dr + φN

∫ ∞

0

V (x)u(r)
2
dr

= φN

∫ ∞

0

[
|u′(r)|2 + VNu(r)

2
]
dr+φN

∫ ∞

0

V (x)u(r)
2
dr

= φN

∫ ∞

0

(
|u′(r)|2 + Ṽ (r)u2(r)

)
dr

= φN (Ãu, u)L2(0,∞),

where φN is the (N − 1)-dimensional surface measure of the sphere SN−1 ⊂ RN . Therefore, we have σ+||φ||2L2(R3) ≤
(Aφ,φ)L2(R3). If some function φ̃ ∈ H1

rad(R3) satisfies the following inequality

0 < (Aφ̃, φ̃)L2(R3) < σ+||φ̃||2L2(R3),

by approximation it can be seen as a smooth function and then setting ũ = r
N−1

2 φ̃ ∈ H+ and satisfies

σ+||ũ||2L2(0,∞) > (Ãũ, ũ)L2(0,∞),

which contradicts (V2). Thus, writing H1
rad(R3) = E− ⊕ E0 ⊕ E+, with E−, E0, E+ the subspaces where of A is

respectively negative, null and positive definite. If φ ∈ E+ it satisfies σ+||φ||2L2(R3) ≤ (Aφ,φ)L2(R3).
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Remark 2 Note that if σ+ is an eigenvalue of Ã with eigenfunction u, the same argument as above shows that σ+ is an
eigenvalue of A, with a radial eigenfunction φ = r

1−N
2 u ∈ E+. On the other hand, if σ+ is not an eigenvalue of Ã, since

it belongs to σess(Ã), given ε > 0 there exist uε ∈ H+ such that

σ+||uε||2L2(0,∞) < (Ãuε, uε)L2(0,∞) < (σ+ + ε)||uε||2L2(0,∞),

which ensures that φε = r
1−N

2 uε ∈ E+ satisfies

σ+||φε||2L2(R3) < (Aφε, φε)L2(R3) < (σ+ + ε)||φε||2L2(R3).

Thus,

σ+ = inf
φ∈E+

(Aφ,φ)L2(R3)

||φ||2L2(R3)

. (1)

Applying the same arguments comparing H− and E−, it holds

−σ− = inf
φ∈E−

−(Aφ,φ)L2(R3)

||φ||2L2(R3)

. (2)

According to the suppose (V2), it is easy to know that either 0 /∈ σ(Ã) or it is an isolated eigenvalue of Ã. Since
0 /∈ σess(Ã) is assumed, if 0 ∈ σ(Ã) it is an eigenvalue of finite multiplicity, hence ker(Ã) is finite dimensional. Because
there exists a correspondence between the eigenfunctions of Ã and the radial eigenfunctions ofA, the same results applies
to A. Furthermore, u1, u2 ∈ H1

0 (0,∞) are orthogonal in L2(0,∞) iff φ1 = r
1−N

2 u1 and φ2 = r
1−N

2 u2 are orthogonal
in L2(R3). In fact, ∫ ∞

0

u1(r)u2(r)dr =
1

φN

∫
R3

φ1(x)φ2(x)dx.

Hence, Hi is infinite dimensional iff Ei is infinite dimensional, for i = −, 0,+.
A typical example of V satisfying (V1) − (V2) is a suitable continuous, periodic and sign-changing V (r), such that

0 /∈ σ
(
− d2

dr2 + V (r)
)

. Therefore 0 is in the gap of the spectrum, which is composed of closed intervals. (− d2

dr2 + V (r)

has positive and negative spectrum, since V (r) is continuous and sign-changing. In addition, Ṽ = V + VN , where VN (r)

decays fast enough, then it is a Kato’s potential and hence Ã-compact, which ensures σess(Ã) = σ
(
− d2

dr2 + V (r)
)

by

Weyl’s theorem (see[23, Corollary 11.3.6] or [16, sections 14.2-14.3]), hence 0 /∈ σess(Ã) and σ(Ã) also has positive
and negative part. Therefore, (V2) is satisfied.

Remark 3 Examples of potentials which satisfy or not assumptions:

(E1) On the basis of the previous observations, V (r) = cos(r) satisfies (V1)− (V2).

(E2) If V (r) = 1
1+r2 − 1

2 it not satisfies (V2) since 0 ∈ σess(Ã). In fact, lim
r→+∞

V (r) = − 1
2 , then σess(Ã) = σess(A) =

[− 1
2 ,+∞).

Next we give an example of f satisfying (f1) − (f5), which is an asymptotically linear continuous function such that
h(x) ≡ a0 > σ+ as in (f3), then for a periodic V , since σ(A) is pure absolutely continuous, a0 /∈ σp(A) and hence
0 /∈ σp(J ) as in (f4). For example,

f(x, s) =
s3

1 + a−1
0 s2

and f(x, s) = (a0 −
1

exp s2
)s.

Remark 4 By (f1)− (f2), given ε > 0 and 2 ≤ p ≤ 2∗ there exists a constant Cε > 0 for all s ∈ R and for all x ∈ R3

such that
|f(x, s)| ≤ ε |s|+ Cε|s|p−1

, (3)

and hence
|F (x, s)| ≤ ε

2
|s|2 + Cε

p
|s|p. (4)
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For any given u ∈ E, there exists a unique ϕu ∈ D1,2(R3) is a weak solution to the following Possion equation

−∆ϕ = k(x)u2 x ∈ R3, (5)

and define Φ : E → D1,2(R3) , it can be expressed explicitly as (see [11])

Φ(u) = ϕu =

∫
R3

k(y)u2(y)

|x− y|
dy.

Next we give some properties about Φ as followings (cf.[7, 8]).

Lemma 5 The following results hold.

(1) The functional Φ is continous.

(2) Φ maps bounded sets into bounded sets.

(3) Φ[tu] = t2Φ[u] for all t ∈ R.

(4) For u ∈ H1(R3), if un ⇀ u, then Φ[un] → Φ[u] in D1,2(R3). Moreover,
∫
R3

k(x)ϕun(x)u
2
n →

∫
R3

k(x)ϕu(x)u
2

and
∫
R3

k(x)ϕun(x)unφ→
∫
R3

k(x)ϕu(x)uφ, ∀φ ∈ H1(R3).

Proof. The proof of the conclusions (1) and (2) can be found in [8]. Properties (3) is direct consequences of the definition
of ϕu as a weak solution of (5). Finally, the proof of (4) given in [7] can be applied. We omit the details in this paper.

From the above computations, the functional I : H1(R3) → R associated to problem (1)

I(u) =
1

2
(Au, u)L2(R3) −

∫
R3

F (x, u)dx− 1

4

∫
R3

k(x)ϕuu
2dx (6)

is well defined. Furthermore, it is known that I is a C1 functional with derivative given by

I ′(u)v = (Au, v)L2(R3) −
∫
R3

f(x, u(x))v(x)dx−
∫
R3

k(x)ϕuuvdx = 0.

Therefore, a weak solution for (2) is a critical point of I : H1(R3) → R.
To obtain a nontrivial critical point of the functional I , we used the abstract linking theorem (see [21]), now we recall

the details below.

Theorem 6 (Linking theorem for Cerami sequences). Let E be a real Hilbert space, with inner product (·, ·), E1 a closed
subspace of E and E2 = E1

⊥. Let I ∈ C1(E,R) satisfying:

(I1) I(u) = 1
2 (Lu, u) + B(u), for all u ∈ E, where u = u1 + u2 ∈ E1 ⊕ E2, Lu = L1u1 + L2u2 and Li : Ei →

Ei, i = 1, 2 is a bounded linear self-adjoint mapping.

(I2) B is weakly continuous and uniformly differentiable on bounded subsets of E.

(I3) There exist Hilbert manifolds S,Q ⊂ E, such that Q is bounded and has boundary ∂Q, constants α > ω and
v ∈ E2 such that

(i) S ⊂ v + E1 and I ≥ α on S; (ii) I ≤ ω on ∂Q; (iii) S and ∂Q link.

(I4) If for a sequence (un), I(un) is bounded and (1 + ∥un∥) ∥I ′(un)∥ → 0, as n→ +∞, then (un) is bounded.

Then I possesses a critical value c ≥ α.
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In the following we just need to find a critical point of I by applying Theorem 6. Since I is an indefinite functional,
it is necessary to check that I satisfies (I1)-(I4). Since V and F are radial functions, for reader’s convenience, we define
E = H1

rad(R3), which is the Hilbert subspace of all radial symmetric functions in H1(R3) and consider I : E → R. In
fact, functions in E satisfy special properties that make true all necessary assumptions on I : E → R, for instance, for
any β ∈ (2, 2∗), E is compactly embedded in Lβ(R3) (see [29] or [6, Theorem A.I’] ).

We denote PA : E → R is a continuous quadratic form on E and

PA(u) =

∫
R3

|∇u(x)|2dx+
∫
R3

V (x)u2(x)dx =
1

2
(Au, u)L2(R3).

The space E can be written as E = E0 ⊕ E− ⊕ E+ with E0, E−, E+ are the closed subspaces of E where PA is null,
negative and positive definite. Moreover, for all u, v ∈ E, if BPA

[u, v] = (Au, v)L2(R3) is the bilinear form associated to
PA and u, v belong to distinct such subspaces, then one has BPA

[u, v] = 0 and PA(u+ v) = PA(u)+PA(v). In addition
E−, E0, E+ are mutually orthogonal in the L2(R3)-inner product. Thus, for u = u0 + u− + u+ ∈ E, it is suitable to
take as an equivalent norm in E the expression

∥u∥2 = ∥u∥2E =
∥∥u2∥∥2

2
+ PA(u

+)− PA(u
−),

and the associated inner product, obtained through BPA
[u, v], which makes E a Hilbert space with E−, E0, E+ orthog-

onal subspaces of E. In virtue of (V2) and Remark 2 for all u+ ∈ E+ and for all u− ∈ E−, it is possible to yields
that

σ+
∥∥u+∥∥2

2
≤

∫
R3

(
∣∣∇u+(x)∣∣2 + V (x)(u+(x))

2
)dx =

∥∥u+∥∥2, (7)

and

−σ− ∥∥u−∥∥2
2
≤ −

∫
R3

(
∣∣∇u−(x)∣∣2 + V (x)(u−(x))

2
)dx =

∥∥u−∥∥2, (8)

which ensures that the norm chosen above is equivalent to the standard norm in H1
rad(R3), once E0 = ker(A) is finite

dimensional. It is observed that I(u) = PA(u) −
∫
R3

F (x, u(x))dx− 1
4

∫
R3

k(x)ϕuu
2dx, for all u ∈ E and since E is a

subspace of H1(R3), I ∈ C1(E,R). In addition, I is indefinite on E, henceforth the goal is to apply Theorem 6 in order
to get a critical point of I restricted to E, and by means of the Principle of Symmetric Critically conclude the critical point
is actually a critical point of I : H1(R3) → R, namely a weak solution to (1)(see[24]).

In order to prove that I satisfies (I1) in Theorem 6. We set E1 = E+ and E2 = E− ⊕ E0. Then E⊥
2 = E1 holds.

Now, define Li : Ei → Ei, for all u ∈ Ei, as given by

(Liu, v)E = P ′
A(u)v = BPA

[u, v] = (Au, v)L2(R3),

for all v ∈ Ei, i = 1, 2, where P ′
A(u)v denotes Fréchet derivative of PA at u acting on v. Thus, L = L1+L2 : E1⊕E2 →

E1 ⊕ E2 is a well defined, linear, bounded operator and it follows that

PA(u) =
1

2
(Au, u)L2(R3) =

1

2
P ′
A(u)u =

1

2
BPA [u, u] =

1

2
(Lu, u)E .

Therefore, I satisfies (I1) in Theorem 6 since

I(u) =
1

2
(Lu, u) +B(u),

where

B(u) = −
∫
R3

F (x, u(x))dx− 1

4

∫
R3

k(x)ϕuu
2dx = B1(u) +B2(u) for all u ∈ E.
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3 The weak continuity and uniform differentiation of I
In order to proceed with the proof of I satisfies (I2), we quote the following famous Strauss compactness lemma[29]
(also [6, Theorem A.I.]). The version applies to functions P depending also on the space variable x. Supposing that the
dependence is uniform on x as |s| goes to 0 and ∞. With a minor adaptation of the proof given in [29] one can state the
following version.

Lemma 7 Let P : R3 × R → R and Q : R → R be two continuous functions satisfying

P (x, s)

Q(s)
→ 0, uniformly in x as |s| → +∞. (9)

Let (un) be a sequence of measurable functions from R3 to R such that

sup
n

∫
R3

|Q(un(x))|dx < +∞, (10)

and
P (x, un(x)) → v(x) a.e. in R3, as n→ +∞. (11)

Then for any bounded Borel set B one has∫
B

|P (x, un(x))− v(x)| dx→ 0, as n→ +∞. (12)

If one further assumes that
P (x, s)

Q(s)
→ 0, uniformly in x as s→ 0, (13)

and
un(x) → 0 as |x| → +∞, uniformly with respect to n, (14)

then P (·, un(·)) converges to v in L1(R3) as n→ +∞.

Proof. For the purpose of prove the first part of the proposition, it is sufficient to show that P (x, un(x)) is uniformly
integrable on B. As a matter of fact, in virtue of (11)∫

B∩{|P (x,un(x))|≤r}

|P (x, un(x))− v(x)| dx→ 0 as n→ +∞,

by applying Lebesgue Dominated Convergence Theorem. Moreover, the integral∫
B∩{|P (x,un(x))|>r}

|P (x, un(x))| dx,

is controlled by uniform integration. By condition (9) there exists a positive constant C such that

|P (x, un(x))| ≤ C(1 + |Q(un(x))|), x ∈ R3.

Hence, due to (10) and Fatou’s Lemma, we can infer thatP (·, un(·)) and v are inL1(B). In addition, sinceP is continuous,
it maps compact sets on compact sets, thus fixed r > 0, if for some x ∈ R, |P (x, un(x))| > r, there existsN = N(r) > 0,
such that |un(x)| > N(r) and N(r) → +∞ as r → +∞. Then one has∫

B∩{|P (x,un(x))|>r}

|P (x, un(x))| dx ≤
∫

B∩{|un(x)|>N(r)}

|P (x, un(x))| dx.

IJNS homepage: http://www.nonlinearscience.org.uk/
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Using condition (9), given ε > 0 there exist N(r) > 0, such that |un(x)| ≥ N(r) implies |P (x, un(x))| ≤ ε |Q(un(x))|
and ε = ε(r) → 0 as N(r) → +∞. Then, there exist C̄ > 0 such that∫

B∩{|P (x,un(x))|>r}

|P (x, un(x))| dx ≤
∫

B∩{|un(x)|>N(r)}

|P (x, un(x))| dx

≤ ε(r)

∫
B

|Q(un(x))| dx

≤ C̄ε(r),

which implies that the uniform integrability and ensures the claim.
For the second part, P (·, un(·)) converges to v in L1(R3) as n → +∞, it is observe that from (13) given ε > 0

there exists δ > 0 such that |s| ≤ δ shows |P (x, s)| ≤ ε|Q(s)|, uniformly in x. Moreover, as result of (14) given
δ > 0 there exists r0 > 0 such that |un(x)| ≤ δ for all |x| ≥ r0, uniformly in n. Therefore, |x| ≥ r0 implies
|P (x, un(x))| ≤ ε|Q(un(x))|, uniformly in n. Hence, in view of Fatou’s Lemma v ∈ L1(R3) and∫

{|x|≥r0}

|v(x)| dx ≤ lim inf
n→∞

∫
{|x|≥r0}

|P (x, un(x))| dx ≤ C̄ε.

Furthermore, from the first part, there exists n0 ∈ N such that for n ≥ n0∫
{|x|<r0}

|P (x, un(x))− v(x)| dx ≤ ε.

Hence, for n ≥ n0 we have ∫
R3

|P (x, un(x))− v(x)| dx ≤ (2C̄ + 1)ε,

which gives the result.
With the purpose of proving that I satisfies (I2) in Theorem 6, and by means of the previous lemma, the following

results are stated and proved.

Lemma 8 If f satisfies (f1)-(f2), then B is weakly continuous.

Proof. Let (un) ∈ E and suppose (un) ⇀ u in E, then (un) is bounded in E. On the one hand, since (f1)-(f2), for
2 < p < 2∗, we get that

lim
s→0

F (x, s)

|s|2
= 0 and lim

|s|→+∞

F (x, s)

|s|p
= 0, uniformly in x. (15)

Hence, setting Q(s) = |s|2 + |s|p, and P (·, s) = F (·, s), it is possible to apply Lemma 7. Obviously, in virtue of (15) it
yields that

lim
s→0

F (x, s)

|s|2 + |s|p
= 0 and lim

|s|→+∞

F (x, s)

|s|2 + |s|p
= 0, uniformly in x. (16)

Then P and Q satisfy (9) and (13). Moreover, since (un) is bounded in E and E is continuously embedded in L2(R3)
and Lp(R3), one has

sup
n

∫
R3

(|un(x)|2 + |un(x)|p)dx = sup
n

(∥un∥22 + ∥un∥pp) ≤ C < +∞. (17)

Hence (10) is satisfied. Provided that un ⇀ u in E and E is compactly embedded in Lp(R3), un → u in Lp(R3) and
un(x) → u(x) almost everywhere in R3. Thus, letting v(x) = F (x, u(x)) it follows that (11) is satisfied. Finally, since
(un) ⊂ H1

rad(R3) and un(x) → u(x) almost everywhere in R3, it yields lim
|x|→+∞

un(x) = 0, uniformly with respect to n
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Y. Luo: Existence of nontrivial radial solutions for Schrödinger-Possion system 11

(see [6, Lemma A.II.] ). Therefore, by Lemma 7, we see that F (·, un(·)) = P (·, un(·)) → v = F (·, u(·)) in L1(R3) as
n→ +∞. In other words,

B1(un) = −
∫
R3

F (x, un(x))dx→ −
∫
R3

F (x, u(x))dx = B1(u), as n→ +∞.

On the other hand, applying Lemma 5, we infer that

B2(un) = −1

4

∫
R3

k(x)ϕun(x)u
2
n → −1

4

∫
R3

k(x)ϕu(x)u
2 = B2(u), as n→ +∞.

Then B is weakly continuous and we complete the proof of Lemma 8.
In order to proveB is uniformly differentiable on bounded sets ofE, we stated the classical Hardy-Littlewood-Sobolev

inequality (see [20]), there exists an absolute constant C0 such that

∫
R3

∫
R3

u2(x)u2(y)

|x− y|
dxdy ≤ C0

∫
R3

|u|
12
5

 5
3

. (18)

Moreover, we will always use the above inequality in the rest of this paper.

Lemma 9 Assume that f ∈ Lp(R3) and g ∈ Lq(R3). Then one has∫
R3

∫
R3

f(x)g(y)

|x− y|
dxdy ≤ c|f |p|g|q, (19)

where 1 < p, q <∞, and 1
p + 1

q + 1
3 = 2.

The following basic inequality is of fundamental importance for considering (1). The proof is provided in [14, Proof
of Propostion 3.2 (3.3)].

Lemma 10 Suppose that u, v ∈ H1(R3). Then one has∫
R3

∫
R3

|u(x)|2|v(y)|2

|x− y|
dxdy ≤

(∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dxdy

) 1
2
(∫

R3

∫
R3

|v(x)|2|v(y)|2

|x− y|
dxdy

) 1
2

. (20)

In the following, to simplify our notation, we define

ϕf =

∫
RN

k(y)|f(y)|2

|x− y|
dy, f ∈ H1

rad(R3). (21)

Apparently, we have the following symmetry property of ϕf for u, v ∈ H1
rad(R3),∫

R3

k(x)ϕuv
2(x)dx =

∫
R3

∫
R3

k(x)k(y)
u2(x)v2(y)

|x− y|
dxdy =

∫
R3

k(y)ϕvu
2(x)dx, (22)

∫
R3

k(x)ϕuu
2(x)dx =

∫
R3

∫
R3

k(x)k(y)
u2(x)u2(y)

|x− y|
dxdy =

∫
R3

k(y)ϕvv
2(x)dx, (23)∫

R3

k(x)ϕuu(x)v(x)dx =

∫
R3

∫
R3

k(x)k(y)
u(x)v(x)v2(y)

|x− y|
dxdy =

∫
R3

k(y)ϕvv(x)u(x)dx, (24)∫
R3

∫
R3

k(x)k(y)
u(y)v(y)u2(x)

|x− y|
dxdy =

∫
R3

∫
R3

k(x)k(y)
u(y)v(y)v2(x)

|x− y|
dxdy. (25)

Lemma 11 Suppose that f satisfies (f1)-(f2), then B is uniformly differentiable on bounded sets of E.
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Proof. First, fixed ϱ > 0 and given u+ v, v ∈ Bϱ ⊂ E, the closed ball centered on the origin, let γ(x) := |f(x, ω(x))−
f(x, u(x))| and ω(x) = u(x) + θ(x)v(x), with 0 ≤ θ(x) ≤ 1 given by Mean Value Theorem and C1 > 0 is the constant
which is given by the continuous embedding E ↪→ L2(R3), it is easy to see that∣∣B1(u+ v)−B1(u)−B1

′(u)v
∣∣

=

∫
R3

|F (x, u(x) + v(x))− F (x, u(x))− f(x, u(x))v(x)| dx

≤
∫
R3

|f(x, ω(x))− f(x, u(x))| |v(x)| dx

≤C1∥γ∥L2(R3) ∥v∥ .

(26)

To prove thatB1 is uniformly differentiable on bounded sets ofE, given ε > 0 it is sufficient to show there exist δ > 0
such thatC1||γ||L2(R3) ≤ ε for all u+v, v ∈ Bϱ with ∥v∥ ≤ δ. Seeking a contradiction, assume that it is not the case, then
there exist ϱ0, ε0 > 0 such that for all δ > 0 there are uδ+vδ, vδ ∈ Bϱ0 with ∥vδ∥ ≤ δ and C1||γ||L2(R3) > ε0. Thus, it is
possible to obtain for all n ∈ N and δ = 1

n functions un+vn, vn ∈ Bϱ0
such that ||vn|| ≤ 1

n and C1||γn||L2(R3) > ε0, for
γn(x) := |f(x, ωn(x)) − f(x, un(x))|, with ωn = un + θnvn, and 0 ≤ θn(x) ≤ 1 depending on un and vn as before.
Due to vn → 0 in E, then vn → 0 in L2(R3), vn → 0 a.e. in R3 and there exists ψ ∈ L2(R3) such that |vn(x)| ≤ ψ(x)
a.e. in R3. In addition, since (un) ⊂ Bϱ0 , it is bounded in E, then un ⇀ u in E up to subsequences, then un → u in
L2
loc(R3) up to subsequences, hence un(x) → u(x) a.e. in R3 and fixed Br(0) ⊂ R3 there exists χr ∈ L2(Br(0)) such

that |un(x)| ≤ χr(x) a.e. in Br(0) up to subsequences. Moreover, ωn ⇀ u in E up to subsequences, then ωn(x) → u in
L2
loc(R3) up to subsequences, thus ωn(x) → u(x) a.e. in R3, which implies that γn(x) → 0, a.e. in R3 , provided that f

is continuous. Additionally , by Remark 4 with p = 2, we get that

|γn(x)|2 = |f(x, ωn(x))− f(x, un(x))|2

≤ 2
[
|f(x, ωn(x))|2 + |f(x, un(x))|2

]
≤ 2

[
C2|ωn(x)|2 + C2|un(x)|2

]
≤ 2

[
C2|un(x) + θn(x)vn(x)|2 + C2|un(x)|2

]
≤ 2C2

[
2(|un(x)|2 + |vn(x)|2) + |un(x)|2

]
≤ 2C2

[
3|un(x)|2 + 2|vn(x)|2

]
≤ 6C2

[
χ2
r(x) + ψ2(x)

]
,

(27)

almost everywhere in Br(0). Since χ2
r + ψ2 ∈ L1(Br(0)), in view of Lebesgue Dominated Convergence Theorem, it

shows that ∫
Br(0)

|γn(x)|2dx→ 0, as n→ +∞. (28)

On the other hand, since (ωn) ⊂ H1
rad(R3) and (un) ⊂ H1

rad(R3) are bounded sequences, applying the characterization
of decay of radial functions (see [6, Radial Lemma A.II)] , we know that

lim
|x|→+∞

ωn(x) = lim
|x|→+∞

un(x) = 0, uniformly with respect to n.

Therefore, we give ζ > 0, and there exists r > 0 such that |x| ≥ r implies |ωn(x)|, |un(x)| ≤ ζ for all n ∈ R. Moreover,
given η > 0 by (f1) there exists ζ > 0 small enough such that |f(x, s)| ≤ η|s| for all |s| ≤ ζ. Hence, for r > 0 large
enough, one has

|f(x, ωn(x))| ≤ η |ωn(x)| and |f(x, un(x))| ≤ η |un(x)| ,
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for all |x| ≥ r and since (ωn) and (un) are bounded sequences in L2(R3), we obtain that∫
R3\Br(0)

|γn(x)|2dx ≤2

∫
R3\Br(0)

[
|f(x, ωn(x))|2 + |f(x, un(x))|2

]
dx

≤2η

∫
R3\Br(0)

(
|ωn(x)|2 + |un(x)|2

)
dx

≤2ηsup
n

(
∥ωn∥22 + ∥un∥22

)
≤ Cη <

1

2

(
ε0
C1

)2

,

(29)

for ϑ sufficiently small. Thus, from (28) and (29), we have(
ε0
C1

)2

< ∥γn∥2L2(R3) =

∫
R3

|γn(x)|2dx ≤ on(1) +
1

2

(
ε0
C1

)2

as n→ +∞. (30)

Hence, letting pass to the limit in (30) as n → +∞, it yields a contradiction. It shows that B1 is uniformly differentiable
on bounded sets of E.

Next we prove thatB2 is also uniformly differentiable on bounded sets ofE. Similarly, note that fixed ϱ > 0 and given
u + v, v ∈ Bϱ ⊂ E, the closed ball centered on the origin, given ε > 0, applying Hardy-Littlewood-Sobolev inequality,
Lemma 9 and Lemma 10, there exists absolute constants C0, C2, C3, such that∣∣B2(u+ v)−B2(u)−B2

′(u)v
∣∣

=

∣∣∣∣∣∣14
∫
R3

k(x)ϕ(u+v)(u+ v)
2
dx− 1

4

∫
R3

k(x)ϕuu
2dx−

∫
R3

k(x)ϕuuvdx

∣∣∣∣∣∣
=

∫
R3

∫
R3

∣∣∣∣14k(x)k(y)u2(y)u2(x)|x− y|
+

1

2
k(x)k(y)

u2(y)v2(x)

|x− y|
+k(x)k(y)

u(y)v(y)u(x)v(x)

|x− y|

∣∣∣∣dxdy
=

∣∣∣∣∣∣14
∫
R3

k(x)ϕuu
2dx

∣∣∣∣∣∣+
∣∣∣∣∣∣12

∫
R3

k(x)ϕuv
2dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
R3

∫
R3

k(x)k(y)
u(y)v(y)u(x)v(x)

|x− y|
dxdy

∣∣∣∣∣∣
≤ C0∥u∥4 + C2∥u∥2∥v∥2 + C3|uv| 6

5
|uv| 6

5

≤ ε.

(31)

Therefore, we finish the proof.

4 The linking geometry
In order to prove that I satisfies (I3) in Theorem 6, as usual, set

S = (∂Bρ ∩ E1) and Q = {re+ u2 : r ≥ 0, u2 ∈ E2, ∥re+ u2∥ ≤ r1},

where 0 < ρ < r1 are constants and e ∈ E1, ||e|| = 1, is chosen suitably. In fact, as a result of the strict inequality in
hypothesis (f3) and by Remark 2, we can select e ∈ E1 a unitary vector given by the spectral family of operator A and
ε > 0 small enough satisfying

1 =∥e∥2 = PA(e) =
1

2
(Ae, e)L2(RN )

≤1

2
(σ+ + ε) ∥e∥22

<
1

2
a0 ∥e∥22

≤1

2

∫
R3

h(x)e2(x)dx.

(32)
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We choose such an e, via (32) it shows that if r1 > 0 is sufficiently large, then I|S ≥ α > 0 and I|∂Q ≤ 0 for some
α > 0. Moreover, S and Q “link” (cf. [21]). Therefore, I satisfies (I3) for some α > 0, ω = 0 and arbitrary ϑ ∈ E2.
Indeed, the following lemma gives the result.

Lemma 12 Suppose that (V1)− (V2) on V and (f1)− (f3) on f holds, then I satisfies (I3).

Proof. Note that S ⊂ E1, then from Remark 4, for 2 < p < 2∗ and for all u1 ∈ S. Thus, a direct argument shows that

I(u1) =
1

2
∥u1∥ −

∫
R3

F (x, u1(x))dx− 1

4

∫
R3

k(x)ϕu1u
2
1dx

≥ 1

2
ρ2 −

∫
R3

(
ε

2
|u1(x)|2 +

Cε

p
|u1(x)|p)dx− c

4
∥u1∥4

≥ 1

2
ρ2 − (

ε

2
C2

2∥u1∥
2
+
Cε

p
Cp

p∥u1∥
p|u1(x)|p +

c

4
∥u1∥4)

=ρ2
[
1

2
(1− εC2

2 )− (
Cε

p
Cp

pρ
p−2 − c

4
ρ2)

]
≥ ρ2(b1 − b2) = α > 0,

(33)

where ε, ρ are chosen small enough, such that 1 > εC2
2 ,

Cε

p C
p
pρ

p−2 > c
4ρ

2 and also

b1 =
1

2
(1− εC2

2 ) >
Cε

p
Cp

pρ
p−2 − c

4
ρ2 = b2.

Therefore, from (33), (I3)(i) holds for I .
With the purpose of proving that I satisfies (I3)(ii) in Theorem 6, with ω = 0, note that I(v) ≤ 0, for all v ∈ E2 =

E−⊕E0, then it suffices to show that I(re+v) ≤ 0 for r > 0, u ∈ E2 and ||re+v|| ≥ r1, for some r1 > 0 large enough.
Arguing indirectly assume that some sequence (rne+ vn) ⊂ R+e⊕E2 satisfies ||re+ v|| → +∞ and I(re+ v) > 0 for
all n ∈ N. For seeking a contradiction, we can set

ṽn :=
rne+ vn

||rne+ vn||
= tne+ ξn,

where tn ∈ R+, ξn = ξ−n + ξ0n ∈ E2 = E− ⊕ E0 and ∥ṽn∥ = 1. Provided that (ṽn) is bounded, up to subsequences
it yields that ṽn ⇀ ṽ = te + ξ in E, hence ṽn → ṽ in L2

loc(R3). Then, up to subsequences, ṽn(x) → ṽ(x) almost
everywhere in R3, tn → t in R+, ξ−n ⇀ ξ− in E, and ξ0n → ξ0 in E, since tn, ξ−n and ξ0n are also bounded, (ξ0n) ⊂ E0

and E0 is finite dimensional. Noting that

1 = ||tne+ ξn||2 = t2n + ||ξ−n ||2 + ||ξ0n||2,

it follows that 0 ≤ t2n ≤ 1, and it yields

I(rne+ vn)

||rne+ vn||2
= t2n||e||2 − ||ξ−n ||2 −

∫
R3

F (x, rne(x) + vn(x))

||rne+ vn||2
dx− 1

4

∫
R3

k(x)ϕuu
2

||rne+ vn||2
dx

= t2n − 1 +
1

2
||ξ0n||2 −

∫
R3

F (x, rne(x) + vn(x))

||rne+ vn||2
dx− 1

4

∫
R3

k(x)ϕuu
2

||rne+ vn||2
dx > 0,

(34)

hence 0 < t ≤ 1. Moreover, from (32) it is possible to choose a bounded domain Ω ⊂ R3, such that

1 <

∫
Ω

h(x)e2(x)dx.
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Then,

0 >
t2

2
− t2

2

∫
Ω

h(x)e2(x)dx

≥ t2

1

2
− 1

2

∫
Ω

h(x)e2(x)dx

−
(
1− 1

2
||ξ0||2 − t2

2

)
− 1

2

∫
Ω

h(x)ξ2(x)dx

= t2

1− 1

2

∫
Ω

h(x)e2(x)dx

− 1 +
1

2
||ξ0||2 − 1

2

∫
Ω

h(x)ξ2(x)dx.

(35)

On the other hand, from assumptions (f1)− (f2) and since ṽn is convergent in L2 (Ω), there exists some ψ ∈ L1 (Ω) such
that ∣∣∣∣F (·, rne(·) + vn(·))

||rne+ vn||2

∣∣∣∣ ≤ r∞|ṽn(·)|2 ≤ ψ(·) ∈ L1 (Ω) .

Moreover, provided that ||rne + vn|| → +∞ and ṽn(x) → ṽ(x) ̸= 0, almost everywhere in supp(ṽ), we infer that
vn (x) = ṽn (x) ||rne(x) + vn (x) || → +∞ almost everywhere in supp(ṽ), as n→ +∞. Furthermore, we get that

F (x, rne(x) + vn(x))

||rne+ vn||2
=
F (x, ṽn (x) ||rne+ un||)ṽ2n (x)

ṽ2n (x) ||rne+ vn||2
→ 1

2
h(x)ṽ2(x),

almost everywhere in supp(ṽ) as n → +∞. Note that, supp(ṽ) ̸= ∅, since ṽ = te + ξ, with supp(e) ̸= ∅ and
(e, ξ)L2(R3) = 0. Thus, because of Lebesgue Dominated Convergence Theorem, we conclude that∫

Ω

F (x, rne(x) + vn(x))

||rne+ vn||2
dx→ 1

2

∫
Ω

h(x)(te(x) + ξ(x))
2
dx as n→ +∞.

From (34) one has

t2n − 1 +
1

2
||ξ0n||2 −

∫
R3

F (x, rne(x) + vn(x))

||rne+ vn||2
dx > 0.

Passing to the limit as n→ +∞, one infers that

0 ≤ t2 − 1 +
1

2
||ξ0||2 − 1

2

∫
Ω

h(x)(t2e2(x) + ξ2(x))dx

= t2

1− 1

2

∫
Ω

h(x)e2(x)dx

− 1 +
1

2
||ξ0||2 − 1

2

∫
Ω

h(x)ξ2(x)dx.

(36)

This contradicts (35). Therefore we complete the proof.

5 The boundedness of Cerami sequences
The following lemma ensures I satisfies last hypothesis in Theorem 6. Finally, with this result, it is possible to prove
Theorem 1. For the boundedness of Cerami sequences, standard arguments are applied and hypotheses (f4) and (f5) are
used. It is important to point out that these assumptions are merely used in order to prove next lemma, since the special
properties of radial functions are not sufficient when problem (1) is treated in R3.

Lemma 13 Assuming that V satisfies (V1)− (V2) and f satisfies (f1)− (f5), then I satisfies (I4).

Proof. We may choose b > 0 is an arbitrary constant, and take (un) ⊂ I−1([c−b, c+b]) satisfies (1+ ||un||)||I ′(un)|| →
0, it is necessary to show that (un) is bounded. Suppose by contradiction that ||un|| → +∞, up to subsequences. We
select ūn := un

||un|| , it is bounded. According to the compact embeddings previously mentioned (cf. [29] and [6]). Thus

IJNS homepage: http://www.nonlinearscience.org.uk/



16 International Journal of Nonlinear Science, Vol.31 (2021), No.1, pp. 3-19

ūn ⇀ ū in E and ūn → ū in Lβ(R3), for β ∈ (2, 2∗). Then we define un = u+n + u−n + u0n ∈ E+ ⊕ E− ⊕ E0, and we
easily get that

on(1) = I ′(un)
u+n

||un||2
=

1

||un||
I ′(un)ū

+
n

= ||ū+n ||2 −
∫
R3

f(x, un (x))

un (x)
ūn (x) ū

+
n (x)dx−

∫
R3

k(x)ϕunun(x)ū
+
n (x)

∥un∥
dx

= ||ū+n ||2 −
∫
R3

f(x, un (x))

un (x)
(ū+n (x))

2
dx−

∫
R3

k(x)ϕun(ū
+
n (x))

2
dx,

(37)

and

on(1) = I ′(un)
u−n

||un||2
=

1

||un||
I ′(un)ū

−
n

= −||ū−n ||2 −
∫
R3

f(x, un (x))

un (x)
ūn (x) ū

−
n (x)dx−

∫
R3

k(x)ϕunun(x)ū
−
n (x)

∥un∥
dx

= −||ū−n ||2 −
∫
R3

f(x, un (x))

un (x)
(ũ−n (x))

2
dx−

∫
R3

k(x)ϕun
(ū−n (x))

2
dx.

(38)

Subtracting (38) from (37), and by means of 1 = ||ū+n ||2 + ||ū−n ||2 + ||ū0n||2. A direct computation shows that

on(1) = 1− ||ū0n||2 −
∫
R3

f(x, un (x))

un (x)
[(ū+n (x))

2 − (ū−n (x))
2
]dx−

∫
R3

k(x)ϕun [(ū
+
n (x))

2 − (ū−n (x))
2
]dx. (39)

Provided that (ū0n) ⊂ E0, which is finite dimensional, then the weak convergence implies that ū0n → ū0 in E. On the
other hand, given φ ∈ C∞

0 (R3) and setting supp (φ) = K, since ūn → ū in L2(K), and applying Lebesgue Dominated
Convergence Theorem, one obtains that∫

K

f(x, un (x))

un (x)
ūn (x)φ (x)dx =

∫
K

h(x)ūn(x)φ (x) dx+on(1), as n→ +∞.

Hence, it yields that

on(1) =
I ′(un)φ

||un||

=
P ′
A(un)φ

||un||
−
∫
K

f(x, un(x))

un (x)
ūn(x)φ(x)dx−

∫
K

k(x)ϕun ūn(x)φ (x) dx

= (Aūn, φ)L2(R3) −
∫
K

(h(x) + k(x)ϕun)ūn (x)φ (x) dx+ on(1)

= (J ūn, φ)L2(R3) + on(1) = (J ū, φ)L2(R3) + on(1).

(40)

In view of (40), if ū ̸= 0, it is an eigenvector of J with eigenvalue 0. Nevertheless, by (f4), 0 /∈ σp(J ) and hence we
have ũ = 0. It deduces that ū+ = ū− = ū0 = 0 and thus ū±n → 0 in Lβ(R3), for β ∈ (2, 2∗), in view of the compact
embeddings, and ū0n → 0 in E. Therefore, we infer from (39) that∫

R3

f(x, un (x))

un (x)
[(ū+n (x))

2 − (ū−n (x))
2
]dx+

∫
R3

k(x)ϕun [(ū
+
n (x))

2 − (ū−n (x))
2
]dx = 1 + on(1). (41)
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Now, we definine Ωn :=
{
x ∈ R3 : |f(x,un(x))|

|un(x)| < κ0

}
⊂ R3 for all n ∈ N, b0 > 0 and for κ0 > 0 given by (f5) and

then one infers that∫
R3\Ωn

|f(x, un (x))|
|un (x)|

∣∣∣(ū+n (x))
2 − (ū−n (x))

2
∣∣∣dx+

∫
R3\Ωn

∣∣∣k(x)ϕun
[(ū+n (x))

2 − (ū−n (x))
2
]
∣∣∣dx

≥
∫

R3\Ωn

|f(x, un (x))|
|un (x)|

∣∣∣(ū+n (x))
2 − (ū−n (x))

2
∣∣∣dx ≥ κ0b0 + on(1).

(42)

Thus we have that

lim inf
n→+∞

∫
R3\Ωn

|f(x, un (x))|
|un (x)|

∣∣∣(ū+n (x))
2 − (ū−n (x))

2
∣∣∣dx ≥ κ0b0. (43)

Furthermore, due to
∣∣∣ f(x,s)s

∣∣∣ is bounded, applying Hölder Inequality for β ∈ (2, 2∗) and for some C > 0, then one has
that ∫

R3\Ωn

|f(x, un (x))|
|un (x)|

∣∣∣(ū+n (x))
2 − (ũ−n (x))

2
∣∣∣dx ≤ C

∣∣R3\Ωn

∣∣ β−2
β

∥∥ū+n + ū−n
∥∥2
Lβ(R3)

. (44)

Provided that ū±n → 0 in Lβ(R3) for β ∈ (2, 2∗), and hence it follows from (43) and (44) that∣∣R3\Ωn

∣∣ → +∞, as n→ +∞. (45)

On the other hand, in view of (f5) and since (un) is a Cerami sequence, we can find a constant M0 > 0 such that

M0 ≥ I (un)−
1

2
I ′(un)un

=

∫
R3

T (x, un (x))dx+
1

4

∫
R3

k(x)ϕunu
2
ndx

≥
∫

R3\Ωn

T (x, un (x))dx

≥ κ0
∣∣R3\Ωn

∣∣ ,

(46)

which contradicts (45). Therefore, (un) is bounded and the result holds.
Finally, we prove the main result of this section.

Proof of Theorem 1.. Provided that I satisfies all assumptions (I1)-(I4) in Theorem 6, it ensures a critical point u ∈ E
of I , with I(u) = c ≥ α > 0, hence u is a non-trivial critical point of I : E → R. It represents that I(u)v = 0, for all
v ∈ H1

rad(R3). Nevertheless, the Principle of Symmetric Criticality [24] implies that I(u)v = 0 for all v ∈ H1(R3), in
other words, u is a critical point of I as a functional defined on the whole H1(R3). Since I ∈ C1(H1(R3),R), it yields
that u is a nontrivial weak solution for (1). Additionally, because of u ∈ E, it is a radial weak solution.
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